Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

Overview

VFedPCA+VFedAKPCA

This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework.

Despite enormous research interest and rapid application of federated learning (FL) to various areas, existing studies mostly focus on supervised federated learning under the horizontally partitioned local dataset setting. This paper will study the unsupervised FL under the vertically partitioned dataset setting.

Server-Clients Architecture

Server-Clients Architecture
Figure: Server-Clients Architecture

Master Branch

VFedPCA+VFedAKPCA                    
└── case                        // Case Studies
    └── figs                    // Save experimental results' figures in '.eps' / '.png' format 
        ├── img_name*.eps              
        └── img_name*.png           
    ├── main.py          
    ├── model.py              
    └── utils.py                 
├── dataset                     // Put downloaded dataset in this folder
└── figs                        // Save experimental results' figures in '.eps' / '.png' format
    ├── img_name*.eps              
    └── img_name*.png           
├── README.md               
├── main.py                     // Experiment on Structured Dataset
├── model.py                   
└── utils.py                     

Environments

  • python = 3.8.8
  • numpy = 1.20.1
  • pandas = 1.2.4
  • scikit-learn = 0.24.1
  • scipy = 1.6.2
  • imageio = 2.9.0

Prepare Dataset

To demonstrate the superiority of our method, we utilized FIVE types of real-world datasets coming with distinct nature.

  1. structured datasets from different domains;
  2. medical image dataset;
  3. face image dataset;
  4. gait image dataset;
  5. person re-identification image dataset.

Step 1: Download Dataset from the Google Drive URL

Step 2: Specify Dataset Path by Command Argument

$ python main.py --data_path="./dataset/xxx"

Experiments

We conduct extensive experiments on structured datasets to exmaines the effect of feature size, local iterations, warm-start power iterations, and weight scaling method on structed datasets. Furthermore, we investigate some case studies with image dataset to demonstrate the effectiveness of VFedPCA and VFedAKPCA.

A. Experiment on Structured Dataset

First, you need to choose the dataset.

python main.py --data_path './dataset/College.csv' --batch_size 160 

Then, you only need to set different flag, p_list, iter_list and sampler_num to exmaines the effect of feature size, local iterations, warm-start power iterations, and weight scaling method on structed datasets. The example is as follows.

flag ='clients'
p_list = [3, 5, 10]         # the number of involved clients
iter_list = [100, 100, 100] # the number of local power iterations
sampler_num = 5

B. Case Studies

python main.py --data_path '../dataset/Image/DeepLesion' /
               --client_num 8 / 
               --iterations 100 / 
               --re_size 512

Citation

@inproceedings{
title = {{Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data}},
author = {Yiu-ming Cheung, Fellow, IEEE, Feng Yu, and Jian Lou},
year = 2021
}
Owner
John
My research interests are machine learning and recommender systems.
John
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022