MaskTrackRCNN for video instance segmentation based on mmdetection

Overview

MaskTrackRCNN for video instance segmentation

Introduction

This repo serves as the official code release of the MaskTrackRCNN model for video instance segmentation described in the tech report:

@article{ Yang2019vis,
  author = {Linjie Yang and Yuchen Fan and Ning Xu},  
  title = {Video instance segmentation},
  journal = {CoRR},
  volume = {abs/1905.04804},
  year = {2019},
  url = {https://arxiv.org/abs/1905.04804}
}

In this work, a new task video instance segmentation is presented. Video instance segmentation extends the image instance segmentation task from the image domain to the video domain. The new problem aims at simultaneous detection, segmentation and tracking of object instances in videos. YouTubeVIS, a new dataset tailored for this task is collected based on the current largest video object segmentation dataset YouTubeVOS. Sample annotations of a video clip can be seen below. We also proposed an algorithm to jointly detect, segment, and track object instances in a video, named MaskTrackRCNN. A tracking head is added to the original MaskRCNN model to match objects across frames. An overview of the algorithm is shown below.

Installation

This repo is built based on mmdetection commit hash f3a939f. Please refer to INSTALL.md to install the library. You also need to install a customized COCO API for YouTubeVIS dataset. You can use following commands to create conda env with all dependencies.

conda create -n MaskTrackRCNN -y
conda activate MaskTrackRCNN
conda install -c pytorch pytorch=0.4.1 torchvision cuda92 -y
conda install -c conda-forge cudatoolkit-dev=9.2 opencv -y
conda install cython -y
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"
bash compile.sh
pip install .

You may also need to follow #1 to load MSCOCO pretrained models.

Model training and evaluation

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on YouTubeVIS based on a MSCOCO pretrained checkpoint (link).

Training

  1. Download YouTubeVIS from here.
  2. Symlink the train/validation dataset to $MMDETECTION/data folder. Put COCO-style annotations under $MMDETECTION/data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── train
│   ├── val
│   ├── annotations
│   │   ├── instances_train_sub.json
│   │   ├── instances_val_sub.json
  1. Run python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py to train the model. For reference to arguments such as learning rate and model parameters, please refer to configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py

Evaluation

Our pretrained model is available for download at Google Drive. Run the following command to evaluate the model on YouTubeVIS.

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py [MODEL_PATH] --out [OUTPUT_PATH] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.json. YouTubeVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license.

Contact

If you have any questions regarding the repo, please contact Linjie Yang ([email protected]) or create an issue.

[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022