This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Overview

Coresets via Bilevel Optimization

This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" https://arxiv.org/pdf/2006.03875.pdf.

This repository also contains the implementation of the selection via Nyström proxy used for selecting batches in "Semi-supervised Batch Active Learning via Bilevel Optimization" https://arxiv.org/pdf/2010.09654. Selection via the Nyström proxy supports data augmentation, it is faster for larger coresets and hence supersedes the representer proxy in data summarization scenarios.

Overview

To get started with the library, check out demo.ipynb Open In Colab that shows how to build coresets for a toy regression problem and for MNIST classification. The following snippet outlines the general usage:

import bilevel_coreset
import loss_utils
import numpy as np

x, y = load_data()

# define proxy kernel function
linear_kernel_fn = lambda x1, x2: np.dot(x1, x2.T)

coreset_size = 10

coreset_constructor = bilevel_coreset.BilevelCoreset(outer_loss_fn=loss_utils.cross_entropy,
                                                    inner_loss_fn=loss_utils.cross_entropy,
                                                    out_dim=y.shape[1])
coreset_inds, coreset_weights = coreset_constructor.build_with_representer_proxy_batch(x, y, 
                                                    coreset_size, linear_kernel_fn, inner_reg=1e-3)
x_coreset, y_coreset = x[coreset_inds], y[coreset_inds]

Note: if you are planning to use the library on your problem, the most important hyperparameter to tune is inner_reg, the regularizer of the inner objective in the representer proxy - try the grid [10-2, 10-3, 10-4, 10-5, 10-6].

Requirements

Python 3 is required. To install the required dependencies, run:

pip install -r requirements.txt

If you are planning to use the NTK proxy, consider installing the GPU version of JAX: instructions here. If you would like to run the experiments, add the project root to your PYTHONPATH env variable.

Data Summarization

Change dir to data_summarization. For running and plotting the MNIST summarization experiment, adjust the globals in runner.py to your setup and run:

python runner.py --exp cnn_mnist
python plotter.py --exp cnn_mnist

Similarly, for the CIFAR-10 summary for a version of ResNet-18 run:

python runner.py --exp resnet_cifar
python plotter.py --exp resnet_cifar

For running the Kernel Ridge Regression experiment, you first need to generate the kernel with python generate_cntk.py. Note: this implementation differs in the kernel choice in generate_kernel() from the paper. For details on the original kernel, please refer to the paper. Once you generated the kernel, generate the results by:

python runner.py --exp krr_cifar
python plotter.py --exp krr_cifar 

Continual Learning and Streaming

We showcase the usage our coreset construction in continual learning and streaming with memory replay. The buffer regularizer beta is tuned individually for each method. We provide the best betas from [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] for each method in cl_results/ and streaming_results/.

Running the Experiments

Change dir to cl_streaming. After this, you can run individual experiments, e.g.:

python cl.py --buffer_size 100 --dataset splitmnist --seed 0 --method coreset --beta 100.0

You can also run the continual learning and streaming experiments with grid search over beta on datasets derived from MNIST by adjusting the globals in runner.py to your setup and running:

python runner.py --exp cl
python runner.py --exp streaming
python runner.py --exp imbalanced_streaming

The table of result can be displayed by running python process_results.py with the corresponding --exp argument. For example, python process_results.py --exp imbalanced_streaming produces:

Method \ Dataset splitmnistimbalanced
reservoir 80.60 +- 4.36
cbrs 89.71 +- 1.31
coreset 92.30 +- 0.23

The experiments derived from CIFAR-10 can be similarly run by:

python cifar_runner.py --exp cl
python process_results --exp splitcifar
python cifar_runner.py --exp imbalanced_streaming
python process_results --exp imbalanced_streaming_cifar

Selection via the Nyström proxy

The Nyström proxy was proposed to support data augmentations. It is also faster for larger coresets than the representer proxy. An example of running the selection on CIFAR-10 can be found in batch_active_learning/nystrom_example.py.

Citation

If you use the code in a publication, please cite the paper:

@article{borsos2020coresets,
      title={Coresets via Bilevel Optimization for Continual Learning and Streaming}, 
      author={Zalán Borsos and Mojmír Mutný and Andreas Krause},
      year={2020},
      journal={arXiv preprint arXiv:2006.03875}
}
Owner
Zalán Borsos
PhD student at ETH Zurich
Zalán Borsos
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023