We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview

Overview

This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which will be presented as a poster paper in NeurIPS'21.

In this work, we propose a regularized self-labeling approach that combines regularization and self-training methods for improving the generalization and robustness properties of fine-tuning. Our approach includes two components:

  • First, we encode layer-wise regularization to penalize the model weights at different layers of the neural net.
  • Second, we add self-labeling that relabels data points based on current neural net's belief and reweights data points whose confidence is low.

An illustration of our approach

Requirements

  • Python >= 3.6
  • PyTorch >= 1.7
  • Optuna >= 2.5
  • Numpy

Usage

Our algorithm is based on layer-wise regularization and self label-correction and label-weighting.

As an example, here are the test accuracy results on the Indoor dataset with independent label noise:

Method Noise = 20% Noise = 40% Noise = 60% Noise = 80%
Ours 75.21 $\pm$ 0.46 68.13 $\pm$ 0.16 57.59 $\pm$ 0.55 34.08 $\pm$ 0.79
Fine-tuning 65.02 $\pm$ 0.39 57.49 $\pm$ 0.39 44.60 $\pm$ 0.95 27.09 $\pm$ 0.19

Run following code to replicate above results:

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 7.80246991703043 --reg_predictor 14.077402847906 \
    --noise_rate 0.2 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 8.47139398080791 --reg_predictor 19.0191127114923 \
    --noise_rate 0.4 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 10.7576018531961 --reg_predictor 19.8157649727473 \
    --noise_rate 0.6 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 
    
python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 9.2031662757248 --reg_predictor 6.41568500472423 \
    --noise_rate 0.8 --train_correct_label --reweight_epoch 5 --reweight_temp 1.5 --correct_epoch 10 --correct_thres 0.9 

Data Preparation

We use seven image datasets in our paper. We list the link for downloading these datasets and describe how to prepare data to run our code below.

  • Aircrafts: download and extract into ./data/aircrafts
    • remove the class 257.clutter out of the data directory
  • CUB-200-2011: download and extract into ./data/CUB_200_2011/
  • Caltech-256: download and extract into ./data/caltech256/
  • Stanford-Cars: download and extract into ./data/StanfordCars/
  • Stanford-Dogs: download and extract into ./data/StanfordDogs/
  • Flowers: download and extract into ./data/flowers/
  • MIT-Indoor: download and extract into ./data/Indoor/

Our code automatically handles the split of the datasets.

Citation

If you find this repository useful, consider citing our work titled above.

Acknowledgment

Thanks to the authors of mars-finetuning and WS-DAN.PyTorch for providing their implementation publicly available.

Owner
NEU-StatsML-Research
We are a group of faculty and students from the Computer Science College of Northeastern University
NEU-StatsML-Research
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022