Fast, flexible and fun neural networks.

Overview

Brainstorm

Discontinuation Notice
Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as Tensorflow or Chainer. These and similar large projects are supported much more actively by a larger number of contributors. They provide, or plan to provide many available and planned features of brainstorm, and have several advantages, particularly in speed. In order to avoid fragmentation and waste of effort, we have decided to discontinue the brainstorm project and contribute to other frameworks and related projects such as Sacred instead. Many thanks to everyone who contributed! For us it has been a thoroughly enjoyable and educational experience.

Documentation Status PyPi Version MIT license Python Versions

Brainstorm makes working with neural networks fast, flexible and fun.

Combining lessons from previous projects with new design elements, and written entirely in Python, Brainstorm has been designed to work on multiple platforms with multiple computing backends.

Getting Started

A good point to start is the brief walkthrough of the cifar10_cnn.py example.
More documentation is in progress, and hosted on ReadTheDocs. If you wish, you can also run the data preparation scripts (data directory) and look at some basic examples (examples directory).

Status

Brainstorm is discontinued.

The currently available feature set includes recurrent (simple, LSTM, Clockwork), 2D convolution/pooling, Highway and batch normalization layers. API documentation is fairly complete and we are currently working on tutorials and usage guides.

Brainstorm abstracts computations via handlers with a consistent API. Currently, two handlers are provided: NumpyHandler for computations on the CPU (through Numpy/Cython) and PyCudaHandler for the GPU (through PyCUDA and scikit-cuda).

Installation

Here are some quick instructions for installing the latest master branch on Ubuntu.

# Install pre-requisites
sudo apt-get update
sudo apt-get install python-dev libhdf5-dev git python-pip
# Get brainstorm
git clone https://github.com/IDSIA/brainstorm
# Install
cd brainstorm
[sudo] pip install -r requirements.txt
[sudo] python setup.py install
# Build local documentation (optional)
sudo apt-get install python-sphinx
make docs
# Install visualization dependencies (optional)
sudo apt-get install graphviz libgraphviz-dev pkg-config
[sudo] pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

To use your CUDA installation with brainstorm:

$ [sudo] pip install -r pycuda_requirements.txt

Set location for storing datasets:

echo "export BRAINSTORM_DATA_DIR=/home/my_data_dir/" >> ~/.bashrc

Help and Support

If you have any suggestions or questions, please post to the Google group.

If you encounter any errors or problems, please let us know by opening an issue.

License

MIT License. Please see the LICENSE file.

Acknowledgements and Citation

Klaus Greff and Rupesh Srivastava would like to thank Jürgen Schmidhuber for his continuous supervision and encouragement. Funding from EU projects NASCENCE (FP7-ICT-317662) and WAY (FP7-ICT-288551) was instrumental during the development of this project. We also thank Nvidia Corporation for their donation of GPUs.

If you use Brainstorm in your research, please cite us as follows:

Klaus Greff, Rupesh Kumar Srivastava and Jürgen Schmidhuber. 2016. Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5. https://github.com/IDSIA/brainstorm

Bibtex:

@misc{brainstorm2015,
  author = {Klaus Greff and Rupesh Kumar Srivastava and Jürgen Schmidhuber},
  title = {{Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5}},
  year = {2015},
  url = {https://github.com/IDSIA/brainstorm}
}
Owner
IDSIA
Istituto Dalle Molle di studi sull'intelligenza artificiale
IDSIA
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022