This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"

Overview

Anomaly Toolbox

Description

Anomaly Toolbox Powered by GANs.

This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection" (https://arxiv.org/pdf/1906.11632.pdf).

The toolbox is meant to be used by the user to explore the performance of different GAN based architectures (in our work aka "experiments"). It also already provides some datasets to perform experiments on:

We provided the MNIST dataset because the original works extensively use it. On the other hand, we have also added the previously listed datasets both because used by a particular architecture and because they contribute a good benchmark for the models we have implemented.

All the architectures were tested on commonly used datasets such as MNIST, FashionMNIST, CIFAR-10, and KDD99. Some of them were even tested on more specific datasets, such as an X-Ray dataset that, however, we could not provide because of the impossibility of getting the data (privacy reasons).

The user can create their own dataset and use it to test the models.

Quick Start

  • First thing first, install the toolbox
pip install anomaly-toolbox

Then you can choose what experiment to run. For example:

  • Run the GANomaly experiment (i.e., the GANomaly architecture) with hyperparameters tuning enabled, the pre-defined hyperparameters file hparams.json and the MNIST dataset:
anomaly-box.py --experiment GANomalyExperiment --hps-path path/to/config/hparams.json --dataset 
MNIST 
  • Otherwise, you can run all the experiments using the pre-defined hyperparameters file hparams. json and the MNIST dataset:
anomaly-box.py --run-all --hps-path path/to/config/hparams.json --dataset MNIST 

For any other information, feel free to check the help:

anomaly-box.py --help

Contribution

This work is completely open source, and we would appreciate any contribution to the code. Any merge request to enhance, correct or expand the work is welcome.

Notes

The structures of the models inside the toolbox come from their respective papers. We have tried to respect them as much as possible. However, sometimes, due to implementation issues, we had to make some minor-ish changes. For this reason, you could find out that, in some cases, some features such as the number of layers, the size of kernels, or other such things may differ from the originals.

However, you don't have to worry. The heart and purpose of the architectures have remained intact.

Installation

pip install anomaly-toolbox

Usage

Options:
  --experiment [AnoGANExperiment|DeScarGANExperiment|EGBADExperiment|GANomalyExperiment]
                                  Experiment to run.
  --hps-path PATH                 When running an experiment, the path of the
                                  JSON file where all the hyperparameters are
                                  located.  [required]
  --tuning BOOLEAN                If you want to use hyperparameters tuning,
                                  use 'True' here. Default is False.
  --dataset TEXT                  The dataset to use. Can be a ready to use
                                  dataset, or a .py file that implements the
                                  AnomalyDetectionDataset interface
                                  [required]
  --run-all BOOLEAN               Run all the available experiments
  --help                          Show this message and exit.

Datasets and Custom Datasets

The provided datasets are:

and are automatically downloaded when the user makes a specific choice: ["MNIST", "CorruptedMNIST", "SurfaceCracks","MVTecAD"].

The user can also add its own specific dataset. To do this, the new dataset should inherit from the AnomalyDetectionDataset abstract class implementing its own configure method. For a more detailed guide, the user can refer to the README.md file inside the src/anomaly_toolbox/datasets folder. Moreover, in the examples folder, the user can find a dummy.py module with the basic skeleton code to implement a dataset.

References

Owner
Zuru Tech
Open source @ ZURU Tech
Zuru Tech
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022