This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

Related tags

Deep LearningxGQA
Overview

xGQA

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

xGQA builds on the original work of Hudson et al. 2019: GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. The training data can be downloaded here.

Overview

The repository is structured as follows:

  • data/zero_shot/ contains the xGQA test-dev files for all 8 languages
  • data/few_shot/ contains the new standard splits for few shot learning. The number in the file name indicates how many distinct images the split includes. i.e. train_10.json implies that this subset contains questions about 10 distinct images.

Training Data

Please download the English training data of GQA (Hudson et al. 2019) here.

Zero-Shot Results

Zero-shot transfer results on xGQA when transferring from English GQA. Average accuracy is reported. Mean scores are not averaged over the source language (English).

model en de pt ru id bn ko zh mean
M3P 58.43 23.93 24.37 20.37 22.57 15.83 16.90 18.60 20.37
OSCAR+Emb 62.23 17.35 19.25 10.52 18.26 14.93 17.10 16.41 16.26
OSCAR+Ada 60.30 18.91 27.02 17.50 18.77 15.42 15.28 14.96 18.27
mBERTAda 56.25 29.76 30.37 24.42 19.15 15.12 19.09 24.86 23.25

Few-Shot

Few-shot dataset sizes. The GQA test-dev set is split into new development, test sets, and training splits of different sizes. We maintain the distribution of structural types in each split.

Set Test Dev Train
#Images 300 50 1 5 10 20 25 48
#Questions 9666 1422 27 155 317 594 704 1490

Citation

If you find this repository helpful, please cite our paper "xGQA: Cross-lingual Visual Question Answering":

@article{pfeiffer-etal-2021-xGQA,
    title={{xGQA: Cross-Lingual Visual Question Answering}},
    author={ Jonas Pfeiffer and Gregor Geigle and Aishwarya Kamath and Jan-Martin O. Steitz and Stefan Roth and Ivan Vuli{\'{c}} and Iryna Gurevych},
    journal = "arXiv preprint", 
    year = "2021",  
    url = "https://arxiv.org/pdf/2109.06082.pdf"
}

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

Owner
AdapterHub
AdapterHub
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022