The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

Overview

GUESS WHO

Main Links: [Github] [App]

Related Links: [CLIP] [Celeba]

The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face. To discover the image, the player must ask questions that can be answered with a binary response, such as "Yes and No". After every question made by the player, the images that don't share the same answer that the winning one are discarded automatically. The answer to the player's questions, and thus, the process of discarding the images will be established by CLIP. When all the images but one have been discarded, the game is over.

The "Guess Who?" game has a handicap when it uses real images, because it is necessary to always ensure that the same criteria are applied when the images are discarded. The original game uses images with characters that present simple and limited features like a short set of different types of hair colors, what makes it very easy to answer true or false when a user asks for a specific hair color. However, with real images it is possible to doubt about if a person is blond haired or brown haired, for example, and it is necessary to apply a method which ensures that the winning image is not discarded by mistake. To solve this problem, CLIP is used to discard the images that do not coincide with the winner image after each prompt. In this way, when the user asks a question, CLIP is used to classify the images in two groups: the set of images that continue because they have the same prediction than the winning image, and the discarded set that has the opposite prediction. The next figure shows the screen that is prompted after calling CLIP on each image in the game board, where the discarded images are highlighted in red and the others in green. CLIP

Select Images

The first step of the game is to select the images to play. The player can press a button to randomly change the used images, which are taken from the CelebA data set. This data set contains 202,599 face images of the size 178×218 from 10,177 celebrities, each annotated with 40 binary labels indicating facial attributes like hair color, gender and age. (see next figure). CLIP

Ask Questions

The game will allow the player to ask the questions in 4 different ways:

1. Default Question

This option consist on select a question from a list. A drop-down list allows the player to select the question to be asked from a group of pre-set questions, taken from the set of binary labels of the Celeba data set. Under the hood, each question is translated into a pair of textual prompts for the CLIP model to allow for the binary classification based on that question. When they are passed to CLIP along with an image, the model responds by giving a greater value to the prompt that is most related to the image. (see next figure). CLIP

2. Write your own prompt

This option is used to allow the player introducing a textual prompt for CLIP with his/her own words. The player text will be then confronted with the neutral prompt, "A picture of a person", and the pair of prompts will be passed to CLIP as in the previous case. (see next figure) CLIP

3. Write your own two prompts

In this case two text input are used to allow the player write two sentences. The player must use two opposite sentences, that is, with an opposite meaning. (see next figure). CLIP

4. Select a winner

This option does not use the CLIP model to make decisions, the player can simply choose one of the images as the winner and if the player hits the winning image, the game is over. (see next figure). CLIP

Punctuation

To motivate the players in finding the winning image with the minimum number of questions, a scoring system is established so that it begins with a certain number of points (100 in the example), and decreases with each asked question. The score is decreased by subtracting the number of remaining images after each question. Furthermore, there are two extra penalties. The first is applied when the player uses the option "Select a winner". This penalty depends on the number of remaining images, so that the fewer images are left, the bigger will be the penalty. Finally, the score is also decreased by two extra points if, after the player makes a question, no image can be discarded.

Acknowledgements

This work has been supported by the company Dimai S.L and next research projects: FightDIS (PID2020-117263GB-100), IBERIFIER (2020-EU-IA-0252:29374659), and the CIVIC project (BBVA Foundation Grants For Scientific Research Teams SARS-CoV-2 and COVID-19).

Owner
Arnau - DIMAI
Arnau - DIMAI
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022