A Multi-modal Model Chinese Spell Checker Released on ACL2021.

Overview

ReaLiSe

ReaLiSe is a multi-modal Chinese spell checking model.

This the office code for the paper Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking.

The paper has been accepted in ACL Findings 2021.

Environment

  • Python: 3.6
  • Cuda: 10.0
  • Packages: pip install -r requirements.txt

Data

Raw Data

SIGHAN Bake-off 2013: http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
SIGHAN Bake-off 2014: http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
SIGHAN Bake-off 2015: http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
Wang271K: https://github.com/wdimmy/Automatic-Corpus-Generation

Data Processing

The code and cleaned data are in the data_process directory.

You can also directly download the processed data from this and put them in the data directory. The data directory would look like this:

data
|- trainall.times2.pkl
|- test.sighan15.pkl
|- test.sighan15.lbl.tsv
|- test.sighan14.pkl
|- test.sighan14.lbl.tsv
|- test.sighan13.pkl
|- test.sighan13.lbl.tsv

Pretrain

  • BERT: chinese-roberta-wwm-ext

    Huggingface hfl/chinese-roberta-wwm-ext: https://huggingface.co/hfl/chinese-roberta-wwm-ext
    Local: /data/dobby_ceph_ir/neutrali/pretrained_models/roberta-base-ch-for-csc/

  • Phonetic Encoder: pretrain_pho.sh

  • Graphic Encoder: pretrain_res.sh

  • Merge: merge.py

You can also directly download the pretrained and merged BERT, Phonetic Encoder, and Graphic Encoder from this, and put them in the pretrained directory:

pretrained
|- pytorch_model.bin
|- vocab.txt
|- config.json

Train

After preparing the data and pretrained model, you can train ReaLiSe by executing the train.sh script. Note that you should set up the PRETRAINED_DIR, DATE_DIR, and OUTPUT_DIR in it.

sh train.sh

Test

Test ReaLiSe using the test.sh script. You should set up the DATE_DIR, CKPT_DIR, and OUTPUT_DIR in it. CKPT_DIR is the OUTPUT_DIR of the training process.

sh test.sh

Well-trained Model

You can also download well-trained model from this direct using. The performance scores of RealiSe and some baseline models on the SIGHAN13, SIGHAN14, SIGHAN15 test set are here:

Methods

Metrics

  • "D" means "Detection Level", "C" means "Correction Level".
  • "A", "P", "R", "F" means "Accuracy", "Precision", "Recall", and "F1" respectively.

SIGHAN15

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Soft-Masked BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
BERT 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

SIGHAN14

Method D-A D-P D-R D-F C-A C-P C-R C-F
Pointer Network - 63.2 82.5 71.6 - 79.3 68.9 73.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
BERT 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

SIGHAN13

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN 78.8 85.7 78.8 82.1 77.8 84.6 77.8 81.0
BERT 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ReaLiSe 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

Citation

@misc{xu2021read,
      title={Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking}, 
      author={Heng-Da Xu and Zhongli Li and Qingyu Zhou and Chao Li and Zizhen Wang and Yunbo Cao and Heyan Huang and Xian-Ling Mao},
      year={2021},
      eprint={2105.12306},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DaDa
A student majoring in Computer Science in BIT.
DaDa
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022