Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Overview

IterMVS

official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Introduction

IterMVS is a novel learning-based MVS method combining highest efficiency and competitive reconstruction quality. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. Extensive experiments on DTU, Tanks & Temples and ETH3D show highest efficiency in both memory and run-time, and a better generalization ability than many state-of-the-art learning-based methods.

If you find this project useful for your research, please cite:

@misc{wang2021itermvs,
      title={IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo}, 
      author={Fangjinhua Wang and Silvano Galliani and Christoph Vogel and Marc Pollefeys},
      year={2021},
      eprint={2112.05126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

Requirements

  • python 3.6
  • CUDA 10.1
pip install -r requirements.txt

Reproducing Results

root_directory
├──scan1 (scene_name1)
├──scan2 (scene_name2) 
      ├── images                 
      │   ├── 00000000.jpg       
      │   ├── 00000001.jpg       
      │   └── ...                
      ├── cams_1                   
      │   ├── 00000000_cam.txt   
      │   ├── 00000001_cam.txt   
      │   └── ...                
      └── pair.txt  

Camera file cam.txt stores the camera parameters, which includes extrinsic, intrinsic, minimum depth and maximum depth:

extrinsic
E00 E01 E02 E03
E10 E11 E12 E13
E20 E21 E22 E23
E30 E31 E32 E33

intrinsic
K00 K01 K02
K10 K11 K12
K20 K21 K22

DEPTH_MIN DEPTH_MAX 

pair.txt stores the view selection result. For each reference image, 10 best source views are stored in the file:

TOTAL_IMAGE_NUM
IMAGE_ID0                       # index of reference image 0 
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 0 
IMAGE_ID1                       # index of reference image 1
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 1 
...

Evaluation on DTU:

  • For DTU's evaluation set, first download our processed camera parameters from here. Unzip it and replace all the old camera files in the folders cams_1 with new files for all the scans.
  • In eval_dtu.sh, set DTU_TESTING as the root directory of corresponding dataset, set --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt).
  • Test on GPU by running bash eval_dtu.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For quantitative evaluation, download SampleSet and Points from DTU's website. Unzip them and place Points folder in SampleSet/MVS Data/. The structure looks like:
SampleSet
├──MVS Data
      └──Points

In evaluations/dtu/BaseEvalMain_web.m, set dataPath as the path to SampleSet/MVS Data/, plyPath as directory that stores the reconstructed point clouds and resultsPath as directory to store the evaluation results. Then run evaluations/dtu/BaseEvalMain_web.m in matlab.

The results look like:

Acc. (mm) Comp. (mm) Overall (mm)
0.373 0.354 0.363

Evaluation on Tansk & Temples:

  • In eval_tanks.sh, set TANK_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_tanks.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on Tanks & Temples, please check the leaderboards (Tanks & Temples: trained on DTU, Tanks & Temples: trained on BlendedMVS).

Evaluation on ETH3D:

  • In eval_eth.sh, set ETH3D_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_eth.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on ETH3D, please check the leaderboards (ETH3D: trained on DTU, ETH3D: trained on BlendedMVS).

Evaluation on custom dataset:

  • We support preparing the custom dataset from COLMAP's results. The script colmap_input.py (modified based on the script from MVSNet) converts COLMAP's sparse reconstruction results into the same format as the datasets that we provide.
  • Test on GPU by running bash eval_custom.sh.

Training

DTU

  • Download pre-processed DTU's training set (provided by PatchmatchNet). The dataset is already organized as follows:
root_directory
├──Cameras_1
├──Rectified
└──Depths_raw
  • Download our processed camera parameters from here. Unzip all the camera folders into root_directory/Cameras_1.
  • In train_dtu.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_dtu.sh.

BlendedMVS

  • Download the dataset.
  • In train_blend.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_blend.sh.

Acknowledgements

Thanks to Yao Yao for opening source of his excellent work MVSNet. Thanks to Xiaoyang Guo for opening source of his PyTorch implementation of MVSNet MVSNet-pytorch.

Owner
Fangjinhua Wang
Ph.D. sutdent in Computer Science; member of CVG; supervised by Prof. Marc Pollefeys
Fangjinhua Wang
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022