MacroTools provides a library of tools for working with Julia code and expressions.

Overview

MacroTools.jl

Build Status

MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system and code-walking tools that let you do deep transformations of code in a few lines. See the docs for more info.

Suggestions, issues and pull requsts are welcome.

Installation

]add MacroTools
Comments
  • Fixes 165, Fixes 177.

    Fixes 165, Fixes 177.

    A partial rewrite of splitarg and combinearg to fix https://github.com/FluxML/MacroTools.jl/issues/165 and https://github.com/FluxML/MacroTools.jl/issues/177.

    The big change here is that arg_type can be nothing if no type is declared for an argument. I know that this is a change to the interface, but I also see no other way to fix the problem. While we are changing the interface, we may want to consider handling literal nothing as an argument default through the base Some and something interface. (discussed in https://github.com/FluxML/MacroTools.jl/issues/35).

    opened by willow-ahrens 23
  • Option to deterministically generate unique ids instead of randomized animal names

    Option to deterministically generate unique ids instead of randomized animal names

    There are a couple of problems with the current animal name scheme used in alias_gensyms:

    1. There are only about 220 animal names in animals.txt. If you have more than 220 gensyms the following line in the current alias_gensyms function is going to error out:

    [email protected]!(syms, x, pop!(left))

    (left is a copy of the animals symbol list)

    1. Currently, the animal names list is randomized when the package is initialized. While working on ONNX.jl we were finding that given the same inputs we would get different code generated due to this randomization. This makes it very difficult for us to debug as we made changes to ONNX.jl and wanted to compare code generated from a prior version on the same inputs.

    This patch generates a simple unique id in the form of "sym_id_$counter" where the counter value is incremented on each gensym encountered.

    I would have preferred replacing all of the "#" characters in the gensym with blanks, however that did not work for me even though I tried the same scheme in the REPL on a gensym string and it did work (see the comment I added in alias_gensyms - maybe someone could get that working?)

    opened by philtomson 13
  • Support function return types in longdef/shortdef

    Support function return types in longdef/shortdef

    I also have a function that uses MacroTools to parse any function definition and return (name, arg, kwargs, body, return_type). Would that be accepted?

    opened by cstjean 13
  • more faithfully reconstruct original function in combinedef

    more faithfully reconstruct original function in combinedef

    Previously combinedef would put an ::Any return type annotation on any function it reconstructed that didn't have one originally, and also wrap the function body in one extra begin block. These both seem completely superfluous except amazingly when combined they trigger the bug I reported here: https://github.com/JuliaLang/julia/issues/29326.

    This PR gets rid of those things and more faithfully reconstructs the original function.

    I also switched to returning the expression via @q which would allow whatever macro is calling combinedef to insert the desired line numbers in there.

    opened by marius311 9
  • move shuffling of animals to be done on demand instead of during initialization

    move shuffling of animals to be done on demand instead of during initialization

    This package is heavily used throughout the ecosystem so optimizing its load time is quite important. The compilation time of the shuffle! call in the __init__ function adds quite a bit of overhead, so I moved this to be done the first time the variable is actually used instead.

    Without this PR:

    julia> @time using MacroTools
      0.067275 seconds (142.56 k allocations: 9.640 MiB, 61.33% compilation time)
    

    With this PR:

    julia> @time using MacroTools
      0.024947 seconds (28.79 k allocations: 3.159 MiB, 22.04% compilation time)
    

    It also removed quite a bit of "noise" when profiling other packages load time that happens to depend on this pacakge recursively.

    opened by KristofferC 8
  • code quality improvements from JET analysis

    code quality improvements from JET analysis

    I ran JET analysis on this package, and fixed some true positive errors.

    run JET on MacroTools

    julia> using JET
    julia> report_file("src/MacroTools.jl"; analyze_from_definitions = true, annotate_types = true)
    

    Before this PR

    ═════ 11 possible errors found ═════
    ┌ @ src/match/match.jl:27 Base.getproperty(Base.getproperty(MacroTools.Base, :match::Symbol)::typeof(match)(r"^@?(.*?)_+(_str)?$", MacroTools.string(s::Symbol)::String)::Union{Nothing, RegexMatch}, :captures::Symbol)
    │┌ @ Base.jl:33 Base.getfield(x::Nothing, f::Symbol)
    ││ type Nothing has no field captures
    │└──────────────
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/utils.jl:423 MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    │ variable MacroTools.rebuilddef is not defined: MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    └────────────────────
    ┌ @ src/utils.jl:455 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    └────────────────────
    ┌ @ src/utils.jl:457 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    └────────────────────
    ┌ @ src/structdef.jl:13 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:21 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:29 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    

    After this PR: only the false positives ramain (Julia's inference or JET itself should be improved)

    ═════ 4 possible errors found ═════
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    
    opened by aviatesk 8
  • improve code quality and type instabilities

    improve code quality and type instabilities

    I used JET and fixed some actual errors and type instabilities. (this PR is the final output of my demo at our workshop)

    /cc @pfitzseb Could you review this PR, please ? :)

    opened by aviatesk 7
  • splitarg incompatible with kwargs on 1.7

    splitarg incompatible with kwargs on 1.7

    Therefore, it is no longer safe to do funcdef[:kwargs] = map(arg->combinearg(splitarg(arg)...), funcdef[:kwargs], since this would transform a definition like f(;kwargs...) to f(;kwargs::Any...) which is no longer allowed in Julia 1.7. I don't know why that's no longer allowed, but from the REPL:

    ERROR: syntax: "x::Any" is not a valid function argument name around REPL[3]:1
    Stacktrace:
     [1] top-level scope
       @ REPL[3]:1
    
    opened by willow-ahrens 6
  • make

    make "slurp" pattern configurable

    This PR setups IGNORED_SLURP_PATTERNS::Set{Symbol}, which allows users to configure patterns that should not be recognized as "slurp"s.

    The motivation here is that there can be double-scores in variable names and so we sometimes may want them not to be recognized as "slurp" pattern.

    For example, let's consider when we want to specify a pattern that only matches __init__() expression:

    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # you may want the latter case not to match
    (true, true)
    

    With this PR, we can configure IGNORED_SLURP_PATTERNS and achieve what we want:

    julia> push!(MacroTools.IGNORED_SLURP_PATTERNS, :__init__); # configure `IGNORED_SLURP_PATTERNS`
    
    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # now `__init__` isn't recognized as slurp pattern
    (true, false)
    

    IGNORED_SLURP_PATTERNS is initialized as an empty set, and thus this change doesn't break any existing behavior by default.

    opened by aviatesk 6
  • don't use exceptions to implement `ismatch` and `trymatch`

    don't use exceptions to implement `ismatch` and `trymatch`

    This is causing https://github.com/JuliaLang/julia/issues/28221. At least for APIs that return a result instead of exposing MatchError, the package should use return values instead of exceptions.

    opened by JeffBezanson 5
  • bizzare match failure for macros in type assertions

    bizzare match failure for macros in type assertions

    MacroTools can't match macros when they appear in the type assertions in function calls. This seems like a crazy issue, but a key macro in my package depended on this functionality and now something has changed with the latest julia build and things fail. Any ideas as to why this match failure would happen?

                   _
       _       _ _(_)_     |  A fresh approach to technical computing
      (_)     | (_) (_)    |  Documentation: https://docs.julialang.org
       _ _   _| |_  __ _   |  Type "?" for help, "]?" for Pkg help.
      | | | | | | |/ _` |  |
      | | |_| | | | (_| |  |  Version 0.7.0-DEV.5246 (2018-05-29 13:27 UTC)
     _/ |\__'_|_|_|\__'_|  |  Commit 082be9a (8 days old master)
    |__/                   |  x86_64-apple-darwin17.5.0
    
    (v0.7) pkg> up MacroTools
      Updating registry at `~/.julia/registries/Uncurated`
      Updating git-repo `https://github.com/JuliaRegistries/Uncurated.git`
     Resolving package versions...
      Updating `~/.julia/environments/v0.7/Project.toml`
     [no changes]
      Updating `~/.julia/environments/v0.7/Manifest.toml`
     [no changes]
    
    julia> using MacroTools
    
    julia> x = :(foo(x::@bar(qux))).args[2].args[2]
    :(#= REPL[3]:1 =# @bar qux)
    
    julia> :(@bar(qux))
    :(#= REPL[4]:1 =# @bar qux)
    
    julia> x.head
    :macrocall
    
    julia> :(@bar(qux)).head
    :macrocall
    
    julia> x.args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[3]:1 =#)
     :qux
    
    julia> :(@bar(qux)).args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[8]:1 =#)
     :qux
    
    julia> @capture(x, @bar(qux))
    false
    
    julia> @capture(:(@bar(qux)), @bar(qux))
    true
    

    EDIT: It appears that this has something to do with line number nodes getting passed as arguments to macros. I rolled a custom solution for myself, but I'll dig into this sometime when I have more time. I don't think this has anything to do with the type assertions at all now.

    opened by willow-ahrens 5
  • Splitdef errors on anonymous function with a single varargs argument

    Splitdef errors on anonymous function with a single varargs argument

    splitdef fails with an assertion on an anonymous function with a single varargs argument:

    julia> splitdef(Meta.parse(" (args...) -> 0 "))
    ERROR: ArgumentError: Not a function definition: :(args...->begin
              #= none:1 =#
              0
          end)
    Stacktrace:
     [1] splitdef(fdef::Expr)
       @ MacroTools ~/.julia/packages/MacroTools/PP9IQ/src/utils.jl:317
    

    Either adding another argument or using the long form of the definition is fine:

    julia> splitdef(Meta.parse(" (x, args...) -> 0 "))
    Dict{Symbol, Any} with 4 entries:
      :args        => Any[:x, :(args...)]
      :body        => quote…
      :kwargs      => Any[]
      :whereparams => ()
    
    julia> splitdef(Meta.parse(" function f(args...) 0 end "))
    Dict{Symbol, Any} with 5 entries:
      :name        => :f
      :args        => Any[:(args...)]
      :kwargs      => Any[]
      :body        => quote…
      :whereparams => ()
    
    opened by julbinb 1
  • @capture union problem

    @capture union problem

    Similar to what was noted in https://github.com/FluxML/MacroTools.jl/issues/40#issuecomment-357466077,

    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_)
    true
    
    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_) | someotherpat
    false
    
    julia> @capture :(myvariable = 2) (lhs_ = rhs_) | someotherpat
    true
    

    The second match should be true as well.

    opened by cstjean 0
  • add dict interface splitargdef and combineargdef

    add dict interface splitargdef and combineargdef

    This PR adds new methods splitargdef and combineargdef (in addition to existing splitarg and combinearg) that use dictionaries as an interface. The dict interface more completely expresses corner cases, as described in https://github.com/FluxML/MacroTools.jl/pull/178. In particular, it provides robust solutions for literal nothing argument defaults and avoids typeasserts when no type is given for an argument.

    opened by willow-ahrens 5
  • `isdef()` seems to return true in any case

    `isdef()` seems to return true in any case

    help?> MacroTools.isdef
      Test for function definition expressions.
    
    julia> MacroTools.isdef(:(f() = 3))
    true
    
    julia> MacroTools.isdef(:(f()))
    true
    
    julia> MacroTools.isdef(:ix)
    true
    
    
    opened by omlins 2
  • rmlines would be more useful if it worked recursively

    rmlines would be more useful if it worked recursively

    rmlines would be more useful it it worked recursively.

    rmlines(Meta.parse("""
    begin
       begin
          begin
    end
    end
    end"""))
    quote
        begin
            #= none:3 =#
            begin
                #= none:4 =#
            end
        end
    end
    

    Yes, one could use postwalk, but I don't think one should have to.

    Also, why isn't postwalk exported?

    At the very least, the documentation should manage expectations by saying that it doesn'[t work recursively and suggesting the use of postwalk.

    opened by MarkNahabedian 1
Releases(v0.5.10)
Owner
FluxML
The Elegant Machine Learning Stack
FluxML
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022