Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Overview

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. Advances in Neural Information Processing Systems 33 (2020).

[Paper] [Poster] [Slides]

Requirements

Basic Requirements

  • Python >= 3.7 (tested on 3.8)

  • signac: this package utilizes signac to manage experiment data and jobs. signac can be installed with the following command:

    pip install signac==1.1 signac-flow==0.7.1 signac-dashboard

    Note that the latest version of signac may cause incompatibility.

  • numpy (tested on 1.18.5)

  • scipy (tested on 1.5.0)

  • networkx >= 2.4 (tested on 2.4)

  • scikit-learn (tested on 0.23.2)

For H2GCN

  • TensorFlow >= 2.0 (tested on 2.2)

Note that it is possible to use H2GCN without signac and scikit-learn on your own data and experimental framework.

For baselines

We also include the code for the baseline methods in the repository. These code are mostly the same as the reference implementations provided by the authors, with our modifications to add JK-connections, interoperability with our experimental pipeline, etc. For the requirements to run these baselines, please refer to the instructions provided by the original authors of the corresponding code, which could be found in each folder under /baselines.

As a general note, TensorFlow 1.15 can be used for all code requiring TensorFlow 1.x; for PyTorch, it is usually fine to use PyTorch 1.6; all code should be able to run under Python >= 3.7. In addition, the basic requirements must also be met.

Usage

Download Datasets

The datasets can be downloaded using the bash scripts provided in /experiments/h2gcn/scripts, which also prepare the datasets for use in our experimental framework based on signac.

We make use of signac to index and manage the datasets: the datasets and experiments are stored in hierarchically organized signac jobs, with the 1st level storing different graphs, 2nd level storing different sets of features, and 3rd level storing different training-validation-test splits. Each level contains its own state points and job documents to differentiate with other jobs.

Use signac schema to list all available properties in graph state points; use signac find to filter graphs using properties in the state points:

cd experiments/h2gcn/

# List available properties in graph state points
signac schema

# Find graphs in syn-products with homophily level h=0.1
signac find numNode 10000 h 0.1

# Find real benchmark "Cora"
signac find benchmark true datasetName\.\$regex "cora"

/experiments/h2gcn/utils/signac_tools.py provides helpful functions to iterate through the data space in Python; more usages of signac can be found in these documents.

Replicate Experiments with signac

  • To replicate our experiments of each model on specific datasets, use Python scripts in /experiments/h2gcn, and the corresponding JSON config files in /experiments/h2gcn/configs. For example, to run H2GCN on our synthetic benchmarks syn-cora:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json [-i] run [-p PARALLEL_NUM]
    • Files and results generated in experiments are also stored with signac on top of the hierarchical order introduced above: the 4th level separates different models, and the 5th level stores files and results generated in different runs with different parameters of the same model.

    • By default, stdout and stderr of each model are stored in terminal_output.log in the 4th level; use -i if you want to see them through your terminal.

    • Use -p if you want to run experiments in parallel on multiple graphs (1st level).

    • Baseline models can be run through the following scripts:

      • GCN, GCN-Cheby, GCN+JK and GCN-Cheby+JK: run_gcn_experiments.py
      • GraphSAGE, GraphSAGE+JK: run_graphsage_experiments.py
      • MixHop: run_mixhop_experiments.py
      • GAT: run_gat_experiments.py
      • MLP: run_hgcn_experiments.py
  • To summarize experiment results of each model on specific datasets to a CSV file, use Python script /experiments/h2gcn/run_experiments_summarization.py with the corresponding model name and config file. For example, to summarize H2GCN results on our synthetic benchmark syn-cora:

    cd experiments/h2gcn/
    python run_experiments_summarization.py h2gcn -f configs/syn-cora/h2gcn.json
  • To list all paths of the 3rd level datasets splits used in a experiment (in planetoid format) without running experiments, use the following command:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json --check_paths run

Standalone H2GCN Package

Our implementation of H2GCN is stored in the h2gcn folder, which can be used as a standalone package on your own data and experimental framework.

Example usages:

  • H2GCN-2

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • H2GCN-1

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --network_setup M64-R-T1-G-V-C1-D0.5-MO \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • Use --help for more advanced usages:

    python run_experiments.py H2GCN planetoid --help

We only support datasets stored in planetoid format. You could also add support to different data formats and models beyond H2GCN by adding your own modules to /h2gcn/datasets and /h2gcn/models, respectively; check out ou code for more details.

Contact

Please contact Jiong Zhu ([email protected]) in case you have any questions.

Citation

Please cite our paper if you make use of this code in your own work:

@article{zhu2020beyond,
  title={Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs},
  author={Zhu, Jiong and Yan, Yujun and Zhao, Lingxiao and Heimann, Mark and Akoglu, Leman and Koutra, Danai},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
Code repository for work by the GEMS Lab: https://gemslab.github.io/research/
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022