Neural Module Network for VQA in Pytorch

Overview

Neural Module Network (NMN) for VQA in Pytorch

Note: This is NOT an official repository for Neural Module Networks.

NMN is a network that is assembled dynamically by composing shallow network fragments called modules into a deeper structure. These modules are jointly trained to be freely composable. This is a PyTorch implementation of Neural Module Networks for Visual Question Answering. Most Ideas are directly taken from the following paper:

Neural Module Networks: Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein. CVPR 2016.

Please cite the above paper in case you use this code in your work. The instructions to reproduce the results can be found below, but first some results demo:

Demo:

More results can be seen with visualize_model.ipynb.

Dependencies:

Following are the main python dependencies of the project: torch, torchvision caffe, matplotlib, numpy, matplotlib and sexpdata.

You also need to have stanford parser available. Once dowloaded, make sure to set STANFORDPARSER in .bashrc so that directory $STANFORDPARSER/libexec/ has stanford-parser.jar

Download Data:

You need to download Images, Annotations and Questions from VQA website. And you need to download VGG model file used to preprocess the images. To save you some efforts of making sure downloaded files are appropriate placed in directory structure, I have prepared few download.txt's'

Run the following command in root directory find . | grep download.txt. You should be able to see the following directories containing download.txt:

./preprocessing/lib/download.txt
./raw_data/Annotations/download.txt
./raw_data/Images/download.txt
./raw_data/Questions/download.txt

Each download.txt has specific instruction with wget command that you need to run in the respective directory. Make sure files are as expected as mentioned in corresponding download.txt after downloading data.

Proprocessing:

preprocessing directory contains the scripts required to preprocess the raw_data. This preprocessed data is stored in preprocessed_data. All scripts in this repository operate on some set. When you download the data, the default sets (directory names) are train2014 and val2014. You can build a question type specific subsets like train2014-sub, val2014-sub by using pick_subset.py. You need to be sure that training / testing / validation set names are consistent in the following scripts (generally set at top of code). By default, everything would work on default sets, but if you need specific set, you need to follow the comments below. You need to run the following scripts in order:

1. python preprocessing/pick_subset.py 	[# Optional: If you want to operate on spcific question-type ]
2. python preprocessing/build_answer_vocab.py         [# Run on your Training Set only]
3. python preprocessing/build_layouts.py              [# Run on your Training Set only]
4. python preprocessing/build_module_input_vocab.py   [# Run on your Training Set only]
5. python preprocessing/extract_image_vgg_features.py [# Run on all Train/ Test / Val Sets]

ToDo: Add setting.py to make sure set-names can be globally configured for experiment.

Run Experiments:

You can start training the model with python train_cmp_nn_vqa.py. The accuracy/loss logs will be piped to logs/cmp_nn_vqa.log. Once training is done, the selected model will be automatically saved at saved_models/cmp_nn_vqa.pt

Visualize Model:

The results can be visualized by running visualize_model.ipynb and selecting model name which was saved.

Evaluate Model:

The model can be evaluated by running python evaluation/evaluate.py. A short summary report should be seen on stdout.

To Do:

  1. Add more documentation
  2. Some more code cleaning
  3. Document results of this implementation on VQA datset
  4. Short blog on implementing NMN in PyTorch

Any Issues?

Please shoot me an email at [email protected]. I will try to fix it as soon as possible.

Owner
Harsh Trivedi
I research in NLP and ML at Stony Brook University
Harsh Trivedi
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022