Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

Overview

FC-DenseNet-Tensorflow

This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). The aim of the repository is to break down the working modules of the network, as presented in the paper, for ease of understanding. To facilitate this, the network is defined in a class, with functions for each block in the network. This promotes a modular view, and an understanding of what each component does individually. I tried to make the model code more readable, and this is the main aim of the this repository.

Network Architecture

Submodules

The "submodules" that build up the Tiramisu are explained here. Note: The graphics are just a redrawing of the ones from the original paper.

The Conv Layer:

The "conv layer" is the most atomic unit of the FC-DenseNet, it is the building block of all other modules. The following image shows the conv layer:

In code, it is implemented as:
def conv_layer(self, x, training, filters, name):
    with tf.name_scope(name):
        x = self.batch_norm(x, training, name=name+'_bn')
        x = tf.nn.relu(x, name=name+'_relu')
        x = tf.layers.conv2d(x,
                             filters=filters,
                             kernel_size=[3, 3],
                             strides=[1, 1],
                             padding='SAME',
                             dilation_rate=[1, 1],
                             activation=None,
                             kernel_initializer=tf.contrib.layers.xavier_initializer(),
                             name=name+'_conv3x3')
        x = tf.layers.dropout(x, rate=0.2, training=training, name=name+'_dropout')

As can be seen, each "convolutional" layer is actually a 4 step procedure of batch normalization -> Relu -> 2D-Convolution -> Dropout.

The Dense Block

The dense block is a sequence of convolutions followed by concatenations. The output of a conv layer is concated depth wise with its input, this forms the input to the next layer, and is repeated for all layers in a dense block. For the final output i.e., the output of the Dense Block, all the outputs of each conv layer in the block are concated, as shown:

In code, it is implemented as:

def dense_block(self, x, training, block_nb, name):
    dense_out = []
    with tf.name_scope(name):
        for i in range(self.layers_per_block[block_nb]):
            conv = self.conv_layer(x, training, self.growth_k, name=name+'_layer_'+str(i))
            x = tf.concat([conv, x], axis=3)
            dense_out.append(conv)

        x = tf.concat(dense_out, axis=3)

    return x

How to Run

To run the network on your own dataset, do the following:

  1. Clone this repository.
  2. Open up your terminal and navigate to the cloned repository
  3. Type in the following:
python main.py --mode=train --train_data=path/to/train/data --val_data=path/to/validation/data \
--ckpt=path/to/save/checkpoint/model.ckpt --layers_per_block=4,5,7,10,12,15 \
--batch_size=8 --epochs=10 --growth_k=16 --num_classes=2 --learning_rate=0.001

The "layers_per_block" argument is only specified for the downsample path, upto the final bottleneck dense block, the upsample path is then automatically built by mirroring the downsample path.

Run with trained checkpoint

To run the code with a trained checkpoint file on images, use the infer mode in in the command line options, like so:

python main.py --mode=infer --infer_data=path/to/infer/data --batch_size=4 \
--ckpt=models/model.ckpt-20 --output_folder=outputs

Tests

The python files ending with "*_test.py" are unit test files, if you make changes or have just cloned the repo, it is a good idea to run them once in your favorite Python IDE, they should let you know if your changes break anything. Currently, the test coverage is not that high, I plan to keep adding more in the future.

TODOs:

  1. Add some more functionality in the code.
  2. Add more detail into this readme.
  3. Save model graph.
  4. Rework command line arguments.
  5. Update with some examples of performance once trained.
  6. Increase test coverage.
  7. Save loss summaries for Tensorboard.
Owner
Hasnain Raza
Hasnain Raza
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022