Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

Overview

FC-DenseNet-Tensorflow

This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). The aim of the repository is to break down the working modules of the network, as presented in the paper, for ease of understanding. To facilitate this, the network is defined in a class, with functions for each block in the network. This promotes a modular view, and an understanding of what each component does individually. I tried to make the model code more readable, and this is the main aim of the this repository.

Network Architecture

Submodules

The "submodules" that build up the Tiramisu are explained here. Note: The graphics are just a redrawing of the ones from the original paper.

The Conv Layer:

The "conv layer" is the most atomic unit of the FC-DenseNet, it is the building block of all other modules. The following image shows the conv layer:

In code, it is implemented as:
def conv_layer(self, x, training, filters, name):
    with tf.name_scope(name):
        x = self.batch_norm(x, training, name=name+'_bn')
        x = tf.nn.relu(x, name=name+'_relu')
        x = tf.layers.conv2d(x,
                             filters=filters,
                             kernel_size=[3, 3],
                             strides=[1, 1],
                             padding='SAME',
                             dilation_rate=[1, 1],
                             activation=None,
                             kernel_initializer=tf.contrib.layers.xavier_initializer(),
                             name=name+'_conv3x3')
        x = tf.layers.dropout(x, rate=0.2, training=training, name=name+'_dropout')

As can be seen, each "convolutional" layer is actually a 4 step procedure of batch normalization -> Relu -> 2D-Convolution -> Dropout.

The Dense Block

The dense block is a sequence of convolutions followed by concatenations. The output of a conv layer is concated depth wise with its input, this forms the input to the next layer, and is repeated for all layers in a dense block. For the final output i.e., the output of the Dense Block, all the outputs of each conv layer in the block are concated, as shown:

In code, it is implemented as:

def dense_block(self, x, training, block_nb, name):
    dense_out = []
    with tf.name_scope(name):
        for i in range(self.layers_per_block[block_nb]):
            conv = self.conv_layer(x, training, self.growth_k, name=name+'_layer_'+str(i))
            x = tf.concat([conv, x], axis=3)
            dense_out.append(conv)

        x = tf.concat(dense_out, axis=3)

    return x

How to Run

To run the network on your own dataset, do the following:

  1. Clone this repository.
  2. Open up your terminal and navigate to the cloned repository
  3. Type in the following:
python main.py --mode=train --train_data=path/to/train/data --val_data=path/to/validation/data \
--ckpt=path/to/save/checkpoint/model.ckpt --layers_per_block=4,5,7,10,12,15 \
--batch_size=8 --epochs=10 --growth_k=16 --num_classes=2 --learning_rate=0.001

The "layers_per_block" argument is only specified for the downsample path, upto the final bottleneck dense block, the upsample path is then automatically built by mirroring the downsample path.

Run with trained checkpoint

To run the code with a trained checkpoint file on images, use the infer mode in in the command line options, like so:

python main.py --mode=infer --infer_data=path/to/infer/data --batch_size=4 \
--ckpt=models/model.ckpt-20 --output_folder=outputs

Tests

The python files ending with "*_test.py" are unit test files, if you make changes or have just cloned the repo, it is a good idea to run them once in your favorite Python IDE, they should let you know if your changes break anything. Currently, the test coverage is not that high, I plan to keep adding more in the future.

TODOs:

  1. Add some more functionality in the code.
  2. Add more detail into this readme.
  3. Save model graph.
  4. Rework command line arguments.
  5. Update with some examples of performance once trained.
  6. Increase test coverage.
  7. Save loss summaries for Tensorboard.
Owner
Hasnain Raza
Hasnain Raza
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Facebook Research 605 Jan 02, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021