Natural Intelligence is still a pretty good idea.

Overview

Downloads Version Code style: black DOI

Human Learn

Machine Learning models should play by the rules, literally.

Project Goal

Back in the old days, it was common to write rule-based systems. Systems that do;

Nowadays, it's much more fashionable to use machine learning instead. Something like;

We started wondering if we might have lost something in this transition. Sure, machine learning covers a lot of ground but it is also capable of making bad decisions. We need to remain careful about hype. We also shouldn't forget that many classification problems can be handled by natural intelligence too. If nothing else, it'd sure be a sensible benchmark.

This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

Installation

You can install this tool via pip.

python -m pip install human-learn

The project builds on top of a modern installation of scikit-learn and pandas. It also uses bokeh for interactive jupyter elements, shapely for the point-in-poly algorithms and clumper to deal with json datastructures.

Documentation

Detailed documentation of this tool can be found here.

A free video course can be found on calmcode.io.

Features

This library hosts a couple of models that you can play with.

Interactive Drawings

This tool allows you to draw over your datasets. These drawings can later be converted to models or to preprocessing tools.

Classification Models

FunctionClassifier

This allows you to define a function that can make classification predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveClassifier

This allows you to draw decision boundaries in interactive charts to create a model. You can create charts interactively in the notebook and export it as a scikit-learn compatible model.

Regression Models

FunctionRegressor

This allows you to define a function that can make regression predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

Outlier Detection Models

FunctionOutlierDetector

This allows you to define a function that can declare outliers. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveOutlierDetector

This allows you to draw decision boundaries in interactive charts to create a model. If a point falls outside of these boundaries we might be able to declare it an outlier. There's a threshold parameter for how strict you might want to be.

Preprocessing Models

PipeTransformer

This allows you to define a function that can handle preprocessing. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search. This is especially powerful in combination with the pandas .pipe method. If you're unfamiliar with this amazing feature, you may appreciate this tutorial.

InteractivePreprocessor

This allows you to draw features that you'd like to add to your dataset or your machine learning pipeline. You can use it via tfm.fit(df).transform(df) and df.pipe(tfm).

Datasets

Titanic

This library hosts the popular titanic survivor dataset for demo purposes. The goal of this dataset is to predict who might have survived the titanic disaster.

Fish

The fish market dataset is also hosted in this library. The goal of this dataset is to predict the weight of fish. However, it can also be turned into a classification problem by predicting the species.

Contribution

We're open to ideas for the repository but please discuss any feature you'd like to add before working on a PR. This way folks will know somebody is working on a feature and the implementation can be discussed with the maintainer upfront.

If you want to quickly get started locally you can run the following command to set the local development environment up.

make develop

If you want to run all the tests/checks locally you can run.

make check

This will run flake8, black, pytest and test the documentation pages.

Comments
  • Idea for a simple rule based classifier

    Idea for a simple rule based classifier

    Ideas for a rule based classifier after discussion with

    @koaning: The hope with that idea is that you can define case_when like statements that can be used as a rule based system.

    This has a few benefits.

    1. It's simple to create for a domain person.
    2. It's possible to create a ui/webapp for it.
    3. You might even be able to generate SQL so that the ML system can also "be deployed" in a database.

    This classifier would not have the full power of Python, but is rather a collection of rules entered by domain experts who are not necessarily technical people.

    Rules

    Rules have no structure and are always interpreted as disjunctions (or) and can be composed of conjunctions (and). To resolve conflict they can have a simple priority field.

    Format of the rules could be

    term:
       feature_name op value
    
    op: '=', '<>', '<', '>', '<=', '>='
    
    expr: term 
           | term 'and' term
    
    rule : term '=>' prediction (prio)?
    

    Examples

    • age < 60 => low
    • sex = 'f' and fare <> => high 10

    Rules need not be expressed as plain text, but also a structured format of nested lists/arrays. A parser for a text format like this would be possible with a very simple recursive descent parser.

    API

    class ClassifierBase:
        def predict(self, X):
            return np.array([ self.predict_single(x) for x in X])
        def predict_proba(self, X):
            return np.array([probas[xi] for xi in self.predict(X)])
        def score(self, X, y):
            n = len(y)
            correct = 0
            predictions = self.predict(X)
            for prediction, ground_truth in zip(predictions, y):
                if prediction == ground_truth:
                    correct = correct + 1
            return correct / n
    
    class CaseWhenClassifier(ClassifierBase):
        def predict_single(self, x):
           ...
    
        def .from_sklearn_tree(self, tree):
           ...
    
        def .to_sklearn_tree(self):
           ...
    
        def to_python_code(self, code_style):
          ...
    
        def parse(self, rules_as_text):
          ...
    
    rules = ...
    rule_clf = CaseWhenClassifier(features, categories, rules)
    
    

    Debugging support for plotting pairwise decision boundaries would be helpful.

    opened by DJCordhose 12
  • Can not draw model on jupyter

    Can not draw model on jupyter

    Hi, I'm trying to draw model on jupyter by referring to this link but it doesn't aprear anything.

    image

    jupyter was run on ubuntu machine and accessed from another remote computer in the same subnet.

    bokeh==2.4.3
    human-learn==0.3.1
    ipywidgets==7.7.1
    jupyter==1.0.0
    jupyter-client==7.3.4
    jupyter-console==6.4.4
    jupyter-core==4.11.1
    jupyter-server==1.18.1
    jupyterlab==3.4.4
    jupyterlab-pygments==0.2.2
    jupyterlab-server==2.15.0
    jupyterlab-widgets==1.1.1
    
    opened by didw 9
  • Adding a tooltip would help make decision on where to draw the line when no labels are available

    Adding a tooltip would help make decision on where to draw the line when no labels are available

    Hey there! Human learn has been super helpful so far. One thing I am a bit missing is the ability to see some of the underlying data about each data point. It would be very helpful to have a tooltip and having the option to pick a list of columns from the data frame to see in the tooltip.

    Right now, I am using Plotly separately to do that which allows me to more easily explore clusters. Then I try to find this cluster and draw on it.

    Screenshot 2021-01-14 19:22:32

    What do you think? Cheers, Nicolas

    opened by nbeuchat 7
  • InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    Hi there! I noticed that when the column used for the labels or the color in an InteractiveCharts contains more than 5 unique values, adding a chart throws an error because the number of available colors in _colors is too low.

    # group_kind contains 7 unique values
    clf = InteractiveCharts(dfs, labels=["spam", "not_spam"], color="group_kind")
    clf.add_chart(x="umap_1", y="umap_2")
    

    It throws the error:

    KeyError                                  Traceback (most recent call last)
    <ipython-input-108-2daa1de2581a> in <module>
    ----> 1 clf.add_chart(x="umap_1", y="umap_2")
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend)
         84         ```
         85         """
    ---> 86         chart = SingleInteractiveChart(
         87             dataf=self.dataf.copy(),
         88             labels=self.labels,
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in __init__(self, dataf, labels, x, y, size, alpha, width, height, color, legend)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in <listcomp>(.0)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    KeyError: 'bulletin_board'
    

    Maybe using a colormap instead of a fixed set of colors would fix the issue?

    opened by nbeuchat 5
  • Can't draw with InteractiveCharts

    Can't draw with InteractiveCharts

    Hi, I'm trying the library just like I've seen on https://calmcode.io/human-learn/draw.html, but with my own data. This is what I got:

    from hulearn.experimental.interactive import InteractiveCharts
    clf = InteractiveCharts(df_labeled, labels="cluster")
    

    BokehJS 2.2.1 successfully loaded

    clf.add_chart(x='dst_ip',y='avg_duration')
    

    The graph appears, data is colored as expected and I can interact with it (zoom and so), but I can't draw the areas.

    I'm using Python 3.7.3, IPython 7.14.0 and Jupyter 5.7.8

    opened by jartigag 5
  • charts not showing up in Visual Studio Code notebook

    charts not showing up in Visual Studio Code notebook

    I am trying basically to reproduce the PyData Berlin environment using human-learn with sentence embeddings and UMAP so that I can draw boundaries, explore, and quickly label text data.

    The problem I am having is that the human-learn charts are not rendering in the VSC notebook. VSC is using Jupyter for the notebook and I am on Windows. I can render Pyplot, Seaborn, even Bokeh into the notebooks but the human-learn charts do not display:

    image

    Is anyone else having this issue? Is there some Jupyter extension I need or some Jupyter command I need to run? Bokeh is 2.3.2, human-learn is 0.3.1

    opened by mschmill 4
  • Running into a traceback error when importing the interactive charts module

    Running into a traceback error when importing the interactive charts module

    I am trying to run the interactive classifier notebook downloaded from the link at the bottom of this page - https://koaning.github.io/human-learn/guide/drawing-classifier/drawing.html.

    This is being run on a Windows x86-64 laptop, with the latest minconda3, python3.8 and jupyter-lab. I run into a traceback error on cell 3 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart

    ImportError                               Traceback (most recent call last)
    <ipython-input-3-9933ce75800d> in <module>()
    ----> 1 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart
    
    ImportError: cannot import name 'InteractiveChart' from 'hulearn.experimental.interactive' (C:\<mypath>\miniconda3\envs\myenv\lib\site-packages\hulearn\experimental\interactive.py)
    

    Not able to figure out what's up; issue reproduces on a unix environment (on Mac) as well.

    opened by aishnaga 4
  • Bokeh Port Error

    Bokeh Port Error

    Sometimes I hit this error:

    ERROR:bokeh.server.views.ws:Refusing websocket connection from Origin 'http://localhost:8889';                       use --allow-websocket-origin=localhost:8889 or set BOKEH_ALLOW_WS_ORIGIN=localhost:8889 to permit this; currently we allow origins {'localhost:8888'}
    WARNING:tornado.access:403 GET /ws (::1) 1.65ms
    

    Would be nice to get an automated fix for this.

    opened by koaning 3
  • geos_c.dll missing

    geos_c.dll missing

    from hulearn.preprocessing import InteractivePreprocessor
    tfm = InteractivePreprocessor(json_desc=charts.data())
    
    df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    

    gives error :

    
    ---------------------------------------------------------------------------
    FileNotFoundError                         Traceback (most recent call last)
    ~\AppData\Local\Temp/ipykernel_28956/1501149949.py in <module>
    ----> 1 from hulearn.preprocessing import InteractivePreprocessor
          2 tfm = InteractivePreprocessor(json_desc=charts.data())
          3 
          4 df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\__init__.py in <module>
          1 from hulearn.preprocessing.pipetransformer import PipeTransformer
    ----> 2 from hulearn.preprocessing.interactivepreprocessor import InteractivePreprocessor
          3 
          4 __all__ = ["PipeTransformer", "InteractivePreprocessor"]
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\interactivepreprocessor.py in <module>
          4 import numpy as np
          5 import pandas as pd
    ----> 6 from shapely.geometry import Point
          7 from shapely.geometry.polygon import Polygon
          8 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\__init__.py in <module>
          2 """
          3 
    ----> 4 from .base import CAP_STYLE, JOIN_STYLE
          5 from .geo import box, shape, asShape, mapping
          6 from .point import Point, asPoint
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\base.py in <module>
         17 
         18 from shapely.affinity import affine_transform
    ---> 19 from shapely.coords import CoordinateSequence
         20 from shapely.errors import WKBReadingError, WKTReadingError
         21 from shapely.geos import WKBWriter, WKTWriter
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\coords.py in <module>
          6 from ctypes import byref, c_double, c_uint
          7 
    ----> 8 from shapely.geos import lgeos
          9 from shapely.topology import Validating
         10 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geos.py in <module>
        147     if os.getenv('CONDA_PREFIX', ''):
        148         # conda package.
    --> 149         _lgeos = CDLL(os.path.join(sys.prefix, 'Library', 'bin', 'geos_c.dll'))
        150     else:
        151         try:
    
    ~\Anaconda3\envs\human-learn\lib\ctypes\__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error, winmode)
        380 
        381         if handle is None:
    --> 382             self._handle = _dlopen(self._name, mode)
        383         else:
        384             self._handle = handle
    
    FileNotFoundError: Could not find module 'C:\Users\BORG7803\Anaconda3\envs\human-learn\Library\bin\geos_c.dll' (or one of its dependencies). Try using the full path with constructor syntax.
    
    opened by Borg93 2
  • AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    Hi Vincent,

    I was particularly impressed by how we could classify the data by just drawing. Kudos to you.

    However, I have been trying to implement the same in a different dataset but it's repeatedly throwing the below error .

    I am also linking my notebook just in case : https://www.kaggle.com/nishantrock/notebook8935105440

    Do suggest why this error is happening. I've tried it multiple times but it throws the same error.


    AttributeError Traceback (most recent call last) in ----> 1 clf.add_chart(x = 'Health Indicator', y = 'Reco_Policy_Premium')

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend) 97 ) 98 self.charts.append(chart) ---> 99 chart.show() 100 101 def data(self):

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in show(self) 199 200 def show(self): --> 201 show(self.app) 202 203 def _replace_xy(self, data):

    /opt/conda/lib/python3.7/site-packages/bokeh/io/showing.py in show(obj, browser, new, notebook_handle, notebook_url, **kw) 135 # in Tornado) just in order to show a non-server object 136 if is_application or callable(obj): --> 137 return run_notebook_hook(state.notebook_type, 'app', obj, state, notebook_url, **kw) 138 139 return _show_with_state(obj, state, browser, new, notebook_handle=notebook_handle)

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in run_notebook_hook(notebook_type, action, *args, **kw) 296 if _HOOKS[notebook_type][action] is None: 297 raise RuntimeError("notebook hook for %r did not install %r action" % notebook_type, action) --> 298 return _HOOKS[notebook_type][action](*args, **kw) 299 300 #-----------------------------------------------------------------------------

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in show_app(app, state, notebook_url, port, **kw) 463 464 from tornado.ioloop import IOLoop --> 465 from ..server.server import Server 466 467 loop = IOLoop.current()

    /opt/conda/lib/python3.7/site-packages/bokeh/server/server.py in 39 # External imports 40 from tornado import version as tornado_version ---> 41 from tornado.httpserver import HTTPServer 42 from tornado.ioloop import IOLoop 43

    /opt/conda/lib/python3.7/site-packages/tornado/httpserver.py in 30 31 from tornado.escape import native_str ---> 32 from tornado.http1connection import HTTP1ServerConnection, HTTP1ConnectionParameters 33 from tornado import httputil 34 from tornado import iostream

    /opt/conda/lib/python3.7/site-packages/tornado/http1connection.py in 32 from tornado import gen 33 from tornado import httputil ---> 34 from tornado import iostream 35 from tornado.log import gen_log, app_log 36 from tornado.util import GzipDecompressor

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in 208 209 --> 210 class BaseIOStream(object): 211 """A utility class to write to and read from a non-blocking file or socket. 212

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in BaseIOStream() 284 self._closed = False 285 --> 286 def fileno(self) -> Union[int, ioloop._Selectable]: 287 """Returns the file descriptor for this stream.""" 288 raise NotImplementedError()

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    opened by 123nishant 2
  • Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Currently, the library does not support adding custom title rather the x and y labels passed to the Interactive chart becomes the title

    self.plot = figure(width=width, height=height, title=f"{x} vs. {y}")

    as shown above we can add common accessors to deal with this?

    opened by tvash 2
  • Please cover a regression example

    Please cover a regression example

    Hi Vincent. I'm super into this framework. As a domain expert, I see some helpful ise cases with this tool involving regression. However, I'm not confident to apply regression as no example are provided.

    opened by FrancyJGLisboa 1
  • Raise `ValueErrors` on incorrect plot input.

    Raise `ValueErrors` on incorrect plot input.

    I noticed on reviewing this PR that SingleInteractiveChart does not check if the inputs make sense with regards to the dataframe that is passed in. We don't want to create an extra SingleInteractiveChart under the InteractiveCharts object because this causes side effects (unneeded json data).

    Let's add some ValueErrors there.

    opened by koaning 0
Releases(0.2.5)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022