DecoupledNet is semantic segmentation system which using heterogeneous annotations

Overview

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTECH

Acknowledgements: Thanks to Yangqing Jia and the BVLC team for creating Caffe.

Introduction

DecoupledNet is semantic segmentation system which using heterogeneous annotations. Based on pre-trained classification network, DecoupledNet fine-tune the segmentation network with very small amount of segmentation annotations and obtains excellent results on semantic segmentation task.

Detailed description of the system will be provided by our technical report [arXiv tech report] http://arxiv.org/abs/1506.04924

Citation

If you're using this code in a publication, please cite our papers.

@article{hong2015decoupled,
  title={Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation},
  author={Hong, Seunghoon and Noh, Hyeonwoo and Han, Bohyung},
  journal={arXiv preprint arXiv:1506.04924},
  year={2015}
}

Pre-trained Model

If you need model definition and pre-trained model only, you can download them from following location: 0. caffe for DecoupledNet: https://github.com/HyeonwooNoh/caffe 0. DecoupledNet [Full annotation] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_Full_anno/DecoupledNet_Full_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_Full_anno/DecoupledNet_Full_anno_inference.caffemodel) 0. DecoupledNet [25 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_25_anno/DecoupledNet_25_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_25_anno/DecoupledNet_25_anno_inference.caffemodel) 0. DecoupledNet [10 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_10_anno/DecoupledNet_10_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_10_anno/DecoupledNet_10_anno_inference.caffemodel) 0. DecoupledNet [5 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_5_anno/DecoupledNet_5_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_5_anno/DecoupledNet_5_anno_inference.caffemodel)

Licence

This software is being made available for research purpose only. Check LICENSE file for details.

System Requirements

This software is tested on Ubuntu 14.04 LTS (64bit).

Prerequisites 0. MATLAB (tested with 2014b on 64-bit Linux) 0. prerequisites for caffe(http://caffe.berkeleyvision.org/installation.html#prequequisites)

Installing DecoupledNet

By running "setup.sh" you can download all the necessary file for training and inference including: 0. caffe: you need modified version of caffe which support DeconvNet - https://github.com/HyeonwooNoh/caffe.git 0. data: data used for training 0. model: caffemodel of trained DecoupledNet and caffemodel of pre-trained classification network

Training DecoupledNet

Training scripts are included in ./training/ directory

To train DecoupledNet with various setting, you can run following scripts 0. 001_convert_classification_network_to_fp_bp_network.sh: * converting classification network to make forward-backward propagation possible (this converted model is prerequisite for DecoupledNet training) 0. 002_train_seg_Full_anno.sh: * training DecoupledNet with full segmentation annotations 0. 003_train_seg_25_anno.sh: * training DecoupledNet with 25 segmentation annotations per class 0. 004_train_seg_10_anno.sh: * training DecoupledNet with 10 segmentation annotations per class 0. 005_train_seg_5_anno.sh: * training DecoupledNet with 5 segmentation annotations per class

DecoupledNet Inference

Inference scripts are included in ./inference/ directory.

Run run_demo.m to run DecoupledNet on VOC2012 test data.

run_demo.m script will run DecoupledNet trained in various settings (Full, 25, 10, 5 annotations): 0. DecoupledNet-Full (66.6 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-25 (62.5 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-10 (58.7 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-5 (54.7 mean I/U on PASCAL VOC 2012 Test)

Owner
Hyeonwoo Noh
Hyeonwoo Noh
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022