Confident Semantic Ranking Loss for Part Parsing

Related tags

Deep LearningCSR
Overview

How to run:

Dataset

  1. Download PASCAL-Part dataset [https://cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.html]

  2. Download the multi-class annotations from [http://cvteam.net/projects/2019/multiclass-part.html]

  3. Modify the configurations in /experiments/CSR/config.py. (The initial performance is about 59.45, then the reported performance can be achieved by fine-tuning.)

  4. Modify the dataset path in /lib/datasets

    (There might be different versions of this dataset, we follow the annotations of CVPR17 to make fair comparisons.)

    PASCAL-Part-multi-class Dataset: http://cvteam.net/projects/2019/figs/Affined.zip

For Test

  1. Download the pretrained model and modify the path in /experiments/config.py

  2. RUN /experiments/CSR/test.py

  3. (Additionally) If customize data, you need to generate a filelist following the VOC format and modify the dataset path.

For Training

If training from scratch, simply run. If not, customize the dir in /experiments/CSR config.py.

(A training demo code is provided in train.py)

  1. (Additionally) download the ImageNet pretrained model:

    model_urls = {

    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',

    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',

    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',

    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',

    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',

    }

  2. Prerequisites: generate semantic part boundaries and semantic object labels. (will be provided soon)

  3. RUN /experiments/CSR/train.py for 100 epochs. (Achieve 59.45 mIoU)

  4. Fine-tune the model using learning rate=0.003 for another 40 epochs. (Achieve 60.70 mIoU)

Acknowledgement

The code is based on the below project:

Yifan Zhao, Jia Li, Yu Zhang, and Yonghong Tian. Multi-class Part Parsing with Joint Boundary-Semantic Awareness in ICCV 2019.

Citation

@inproceedings{tan2021confident,
  title={Confident Semantic Ranking Loss for Part Parsing},
  author={Tan, Xin and Xu, Jiachen and Ye, Zhou and Hao, Jinkun and Ma, Lizhuang},
  booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
  pages={1--6},
  year={2021},
  organization={IEEE}
}
Owner
Jiachen Xu
Jiachen Xu
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022