This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Related tags

Deep LearningCRGNN
Overview

CRGNN

Paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Environments

Implementing environment: GeForce RTX™ 3090 24GB (GPU)

Requirements

pytorch>=1.8.1

ogb=1.3.2

numpy=1.21.2

cogdl (latest version)

Training

GAMLP+RLU+SCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 400 300 300 300 300 300 --train-num-epochs 0 0 0 0 0 0 --threshold 0.85 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 50000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --consis --tem 0.5 --lam 0.1 --hidden 512 --ema

GAMLP+MCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.999 --lr 0.001 --adap --gap 10 --warm_up 150 --top 0.9 --down 0.8 --kl --kl_lam 0.2 --hidden 512

GIANT-XRT+GAMLP+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 2144151
python pre_processing.py --num_hops 5 --dataset ogbn-products --giant_path " "

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 10 --warm_up 150 --kl --kl_lam 0.2 --hidden 256 --down 0.7 --top 0.9 --giant

SAGN+MCR

For ogbn-products:

Params: 2179678
python pre_processing.py --num_hops 3 --dataset ogbn-products

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 100000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 150 --top 0.85 --down 0.75 --kl --kl_lam 0.01 --hidden 512 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 2 --num_hops 3 --label_num_hops 14

GIANT-XRT+SAGN+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 1154654
python pre_processing.py --num_hops 3 --dataset ogbn-products --giant_path " "

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 50000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 100 --top 0.85 --down 0.75 --kl --kl_lam 0.02 --hidden 256 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 1 --num_hops 3 --label_num_hops 9 --giant

Use Optuna to search for C&S hyperparameters

We searched hyperparameters using Optuna on validation set.

python post_processing.py --file_name --search

GAMLP+RLU+SCR+C&S

python post_processing.py --file_name --correction_alpha 0.4780826957236622 --smoothing_alpha 0.40049734940262954

GIANT-XRT+SAGN+MCR+C&S

python post_processing.py --file_name --correction_alpha 0.42299283241438157 --smoothing_alpha 0.4294212449832242

Node Classification Results:

Performance on ogbn-products(10 runs):

Methods Validation accuracy Test accuracy
SAGN+MCR 0.9325±0.0004 0.8441±0.0005
GAMLP+MCR 0.9319±0.0003 0.8462±0.0003
GAMLP+RLU+SCR 0.9292±0.0005 0.8505±0.0009
GAMLP+RLU+SCR+C&S 0.9304±0.0005 0.8520±0.0008
GIANT-XRT+GAMLP+MCR 0.9402±0.0004 0.8591±0.0008
GIANT-XRT+SAGN+MCR 0.9389±0.0002 0.8651±0.0009
GIANT-XRT+SAGN+MCR+C&S 0.9387±0.0002 0.8673±0.0008

Citation

Our paper:

@misc{zhang2021improving,
      title={Improving the Training of Graph Neural Networks with Consistency Regularization}, 
      author={Chenhui Zhang and Yufei He and Yukuo Cen and Zhenyu Hou and Jie Tang},
      year={2021},
      eprint={2112.04319},
      archivePrefix={arXiv},
      primaryClass={cs.SI}
}

GIANT paper:

@article{chien2021node,
  title={Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction},
  author={Eli Chien and Wei-Cheng Chang and Cho-Jui Hsieh and Hsiang-Fu Yu and Jiong Zhang and Olgica Milenkovic and Inderjit S Dhillon},
  journal={arXiv preprint arXiv:2111.00064},
  year={2021}
}

GAMLP paper:

@article{zhang2021graph,
  title={Graph attention multi-layer perceptron},
  author={Zhang, Wentao and Yin, Ziqi and Sheng, Zeang and Ouyang, Wen and Li, Xiaosen and Tao, Yangyu and Yang, Zhi and Cui, Bin},
  journal={arXiv preprint arXiv:2108.10097},
  year={2021}
}

SAGN paper:

@article{sun2021scalable,
  title={Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced training},
  author={Sun, Chuxiong and Wu, Guoshi},
  journal={arXiv preprint arXiv:2104.09376},
  year={2021}
}

C&S paper:

@inproceedings{
huang2021combining,
title={Combining Label Propagation and Simple Models out-performs Graph Neural Networks},
author={Qian Huang and Horace He and Abhay Singh and Ser-Nam Lim and Austin Benson},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=8E1-f3VhX1o}
}
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022