Augmenting Anchors by the Detector Itself

Related tags

Computer Visionaadi
Overview

Augmenting Anchors by the Detector Itself

Introduction

It is difficult to determine the scale and aspect ratio of anchors for anchor-based object detection methods. Current state-of-the-art object detectors either determine anchor parameters according to objects' shape and scale in a dataset, or avoid this problem by utilizing anchor-free method. In this paper, we propose a gradient-free anchor augmentation method named AADI, which means Augmenting Anchors by the Detector Itself. AADI is not an anchor-free method, but it converts the scale and aspect ratio of anchors from a continuous space to a discrete space, which greatly alleviates the problem of anchors' designation. Furthermore, AADI does not add any parameters or hyper-parameters, which is beneficial for future research and downstream tasks. Extensive experiments on COCO dataset show that AADI has obvious advantages for both two-stage and single-stage methods, specifically, AADI achieves at least 2.1 AP improvements on Faster R-CNN and 1.6 AP improvements on RetinaNet, using ResNet-50 model. We hope that this simple and cost-efficient method can be widely used in object detection.

  • For RPN

    • Baseline

      Num anchors AR100 AR1000 ARs ARm ARl
      1 45.5 55.6 31.4 52.8 60.0
      3 45.7 58.0 31.4 52.7 61.1
    • Ablation Study

      dilation Anchor Guided AR100 AR1000 ARs ARm ARl
      1 52.8 60.6 40.2 60.8 63.6
      2 54.8 64.7 39.0 63.1 70.6
      2 56.3 66.7 39.5 64.9 73.4
      3 53.7 64.0 35.4 62.1 73.9
      3 55.6 67.6 36.1 64.3 77.6
      4 52.2 60.5 30.9 61.3 76.6
      4 54.4 65.5 33.0 63.7 78.9
  • For RetinaNet

    • Ablation Study

      AADI dilation AP AP50 AP75 APs APm APl
      1 38.2 58.4 41.1 24.3 42.2 48.5
      1 37.3 56.4 40.2 22.0 39.9 46.8
      2 39.8 57.5 43.5 22.1 43.5 50.6
      3 38.3 54.6 41.7 20.0 43.1 51.1
    • With IoU

      AP AP50 AP75 APs APm APl
      40.2 57.7 43.8 24.1 43.1 52.2
    • With 3x schedule (RetinaNet with giou, AADI with smooth l1)

      Model AP AP50 AP75 APs APm APl
      RetinaNet 39.6 59.3 42.2 24.9 43.3 50.7
      AADI-RetinaNet 41.4 59.3 45.2 24.8 44.9 54.0
  • For Faster R-CNN

    • Ablation Study

      AADI dilation AP AP50 AP75 APs APm APl FPS
      1(3 anchors) 37.9 58.8 41.1 22.4 41.1 49.1 26.3
      2 40.3 59.3 44.3 24.2 43.3 52.2 22.4
      3 40.8 59.5 45.0 24.0 44.6 53.1 22.4
      4 40.5 58.7 44.6 23.2 44.8 52.7 22.3
    • 3x schedule

      Backbone AP AP50 AP75 APs APm APl FPS
      R-50 FPN 42.5 61.2 46.5 25.3 46.2 55.5 22.6
      DCN-50 FPN 44.1 63.1 48.2 28.3 46.9 58.4 20.1
      R-101 FPN 44.5 63.2 48.7 26.9 48.3 57.4 17.4
  • Detectron2

Detectron2 is Facebook AI Research's next generation library that provides state-of-the-art detection and segmentation algorithms. It is the successor of Detectron and maskrcnn-benchmark. It supports a number of computer vision research projects and production applications in Facebook.

Installation

See installation instructions.

Getting Started

See Getting Started with Detectron2, and the Colab Notebook to learn about basic usage.

Learn more at our documentation.

Citing Detectron2

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}

@misc{wan2021augmenting,
      title={Augmenting Anchors by the Detector Itself}, 
      author={Xiaopei Wan and Shengjie Chen and Yujiu Yang and Zhenhua Guo and Fangbo Tao},
      year={2021},
      eprint={2105.14086},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Rizky Dermawan 4 Mar 10, 2022
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Morphological edge detection or object's boundary detection using erosion and dialation in OpenCV python

Morphologycal-edge-detection-using-erosion-and-dialation the task is to detect object boundary using erosion or dialation . Here, use the kernel or st

Tamzid hasan 3 Nov 25, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

Tom 794 Dec 30, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"

SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text

Christian Bartz 572 Jan 05, 2023