Progressive Coordinate Transforms for Monocular 3D Object Detection

Overview

Progressive Coordinate Transforms for Monocular 3D Object Detection

This repository is the official implementation of PCT.

Introduction

In this paper, we propose a novel and lightweight approach, dubbed Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations for monocular 3D object detection. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy allows us to establish a new state-of-the-art among the monocular 3D detectors on the competitive KITTI benchmark. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks.

arch

Requirements

Installation

Download this repository (tested under python3.7, pytorch1.3.1 and ubuntu 16.04.7). There are also some dependencies like cv2, yaml, tqdm, etc., and please install them accordingly:

cd #root
pip install -r requirements

Then, you need to compile the evaluation script:

cd root/tools/kitti_eval
sh compile.sh

Prepare your data

First, you should download the KITTI dataset, and organize the data as follows (* indicates an empty directory to store the data generated in subsequent steps):


#ROOT
  |data
    |KITTI
      |2d_detections
      |ImageSets
      |pickle_files *
      |object
        |training
          |calib
          |image_2
          |label
          |depth *
          |pseudo_lidar (optional for Pseudo-LiDAR)*
          |velodyne (optional for FPointNet)
        |testing
          |calib
          |image_2
          |depth *
          |pseudo_lidar (optional for Pseudo-LiDAR)*
          |velodyne (optional for FPointNet)

Second, you need to prepare your depth maps and put them to data/KITTI/object/training/depth. For ease of use, we also provide the estimated depth maps (these data generated from the pretrained models provided by DORN and Pseudo-LiDAR).

Monocular (DORN) Stereo (PSMNet)
trainval(~1.6G), test(~1.6G) trainval(~2.5G)

Then, you need to generate image 2D features for the 2D bounding boxes and put them to data/KITTI/pickle_files/org. We train the 2D detector according to the 2D detector in RTM3D. You can also use your own 2D detector for training and inference.

Finally, generate the training data using provided scripts :

cd #root/tools/data_prepare
python patch_data_prepare_val.py --gen_train --gen_val --gen_val_detection --car_only
mv *.pickle ../../data/KITTI/pickle_files

Prepare Waymo dataset

We also provide Waymo Usage for monocular 3D detection.

Training

Move to the workplace and train the mode (also need to modify the path of pickle files in config file):

 cd #root
 cd experiments/pct
 python ../../tools/train_val.py --config config_val.yaml

Evaluation

Generate the results using the trained model:

 python ../../tools/train_val.py --config config_val.yaml --e

and evalute the generated results using:

../../tools/kitti_eval/evaluate_object_3d_offline_ap11 ../../data/KITTI/object/training/label_2 ./output

or

../../tools/kitti_eval/evaluate_object_3d_offline_ap40 ../../data/KITTI/object/training/label_2 ./output

we provide the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. Result is:

Models [email protected]. [email protected] [email protected]
PatchNet + PCT 27.53 / 34.65 38.39 / 47.16 24.44 / 28.47

Acknowledgements

This code benefits from the excellent work PatchNet, and use the off-the-shelf models provided by DORN and RTM3D.

Citation

@article{wang2021pct,
  title={Progressive Coordinate Transforms for Monocular 3D Object Detection},
  author={Li Wang, Li Zhang, Yi Zhu, Zhi Zhang, Tong He, Mu Li, Xiangyang Xue},
  journal={arXiv preprint arXiv:2108.05793},
  year={2021}
}

Contact

For questions regarding PCT-3D, feel free to post here or directly contact the authors ([email protected]).

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022