Multivariate Boosted TRee

Related tags

Deep Learningmbtr
Overview

Documentation Status Build Status codecov Latest Version License: MIT

Multivariate Boosted TRee

What is MBTR

MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can handle arbitrary multivariate losses, as long as their gradient and Hessian are known. Gradient boosted trees are competition-winning, general-purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a specific loss function. The most popular implementations are tailored to univariate regression and classification tasks, precluding the possibility of capturing multivariate target cross-correlations and applying conditional penalties to the predictions. This package allows to arbitrarily regularize the predictions, so that properties like smoothness, consistency and functional relations can be enforced.

Installation

pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git

Usage

MBT regressor follows the scikit-learn syntax for regressors. Creating a default instance and training it is as simple as:

m = MBT().fit(x,y)

while predictions for the test set are obtained through

y_hat = m.predict(x_te)

The most important parameters are the number of boosts n_boost, that is, the number of fitted trees, learning_rate and the loss_type. An extensive explanation of the different parameters can be found in the documentation.

Documentation

Documentation and examples on the usage can be found at docs.

Reference

If you make use of this software for your work, we would appreciate it if you would cite us:

Lorenzo Nespoli and Vasco Medici (2020). Multivariate Boosted Trees and Applications to Forecasting and Control arXiv

@article{nespoli2020multivariate,
  title={Multivariate Boosted Trees and Applications to Forecasting and Control},
  author={Nespoli, Lorenzo and Medici, Vasco},
  journal={arXiv preprint arXiv:2003.03835},
  year={2020}
}

Acknowledgments

The authors would like to thank the Swiss Federal Office of Energy (SFOE) and the Swiss Competence Center for Energy Research - Future Swiss Electrical Infrastructure (SCCER-FURIES), for their financial and technical support to this research work.

You might also like...
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

NAS Benchmark in
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

This is the code repository implementing the paper
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

Comments
  • Is it possible to define custom loss function ?

    Is it possible to define custom loss function ?

    Dear all, First thank you for developping this tool, that I believe is of great interest. I am working with:

    • environmental variables (e.g. temperature, salinity)
    • multi-dimensional targets, that are relative abundance, with their sum = 1 for each site

    Therefore, I was wondering if it is possible to implement a custom loss function in the mbtr framework, that would be adapted for proportions. Please note that I am quite new to python.

    To do some testing, I tryed to dupplicate the mse loss function with another name in the losses.py file and adding the new loss in the LOSS_MAP in __inits__.py. Then I compiled the files. However, I have this error when trying to run the model from the multi_reg.py example:

    >>> m = MBT(loss_type = 'mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      3%|▎         | 1/30 [00:03<01:45,  3.63s/it]
    >>> m = MBT(loss_type = 'custom_mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      0%|          | 0/30 [00:00<?, ?it/s]KeyError: 'custom_mse'
    

    It seems that the new loss is not recognised in LOSS_MAP:

    >>> LOSS_MAP = {'custom_mse': losses.custom_MSE,
    ...             'mse': losses.MSE,
    ...             'time_smoother': losses.TimeSmoother,
    ...             'latent_variable': losses.LatentVariable,
    ...             'linear_regression': losses.LinRegLoss,
    ...             'fourier': losses.FourierLoss,
    ...             'quantile': losses.QuantileLoss,
    ...             'quadratic_quantile': losses.QuadraticQuantileLoss}
    AttributeError: module 'mbtr.losses' has no attribute 'custom_MSE'
    

    I guess that I missed something when trying to dupplicate and rename the mse loss. I would appreciate any help if the definition of a custom loss function is possible.

    Best regards,

    opened by alexschickele 2
  • Dataset cannot be reached

    Dataset cannot be reached

    Hi thank you for your effort to create this. I want to try this but i cannot download nor visit the web that you provided in example multivariate_forecas.py

    Is there any alternative link for that dataset? thank you regards!

    opened by kristfrizh 1
  • Error at import time with python 3.10.*

    Error at import time with python 3.10.*

    I want to use MBTR in a teaching module and I need to use jupyter-lab inside a conda environment for teaching purposes. While MBTR works as expected in a vanilla python 3.8, it errors out (on the same machine) in a conda environment using python 3.10

    Steps to reproduce

    conda create --name testenv
    conda activate testenv
    
    conda install -c conda-forge jupyterlab
    pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git
    # to make sure to get the latest version; but the version on pypi gives the same error 
    

    Then

    python
    

    and in python

    from mbtr.mbtr import MBT
    

    which outputs the following error

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 317, in <module>
        def leaf_stats(y, edges, x, order):
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/decorators.py", line 219, in wrapper
        disp.compile(sig)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 965, in compile
        cres = self._compiler.compile(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 129, in compile
        raise retval
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 139, in _compile_cached
        retval = self._compile_core(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 152, in _compile_core
        cres = compiler.compile_extra(self.targetdescr.typing_context,
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 716, in compile_extra
        return pipeline.compile_extra(func)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 452, in compile_extra
        return self._compile_bytecode()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 520, in _compile_bytecode
        return self._compile_core()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 499, in _compile_core
        raise e
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 486, in _compile_core
        pm.run(self.state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 368, in run
        raise patched_exception
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 356, in run
        self._runPass(idx, pass_inst, state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock
        return func(*args, **kwargs)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 311, in _runPass
        mutated |= check(pss.run_pass, internal_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 273, in check
        mangled = func(compiler_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 105, in run_pass
        typemap, return_type, calltypes, errs = type_inference_stage(
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stage
        errs = infer.propagate(raise_errors=raise_errors)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typeinfer.py", line 1086, in propagate
        raise errors[0]
    numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
    No conversion from UniTuple(none x 2) to UniTuple(array(float64, 2d, A) x 2) for '$116return_value.7', defined at None
    
    File ".conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    
    During: typing of assignment at /home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py (327)
    
    File ".conda/envs/test/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    

    Thanks in advance for any pointer/help. The course where I want to present this is a summer course and is closing in on me 😉

    opened by jiho 0
Releases(v0.1.3)
Owner
SUPSI-DACD-ISAAC
SUPSI-DACD-ISAAC
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021