Semantic Bottleneck Scene Generation

Related tags

Deep LearningSB-GAN
Overview

SB-GAN

Semantic Bottleneck Scene Generation

Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the flexibility of unconditional generative models, we propose a semantic bottleneck GAN model for unconditional synthesis of complex scenes. We assume pixel-wise segmentation labels are available during training and use them to learn the scene structure. During inference, our model first synthesizes a realistic segmentation layout from scratch, then synthesizes a realistic scene conditioned on that layout. For the former, we use an unconditional progressive segmentation generation network that captures the distribution of realistic semantic scene layouts. For the latter, we use a conditional segmentation-to-image synthesis network that captures the distribution of photo-realistic images conditioned on the semantic layout. When trained end-to-end, the resulting model outperforms state-of-the-art generative models in unsupervised image synthesis on two challenging domains in terms of the Frechet Inception Distance and user-study evaluations. Moreover, we demonstrate the generated segmentation maps can be used as additional training data to strongly improve recent segmentation-to-image synthesis networks.

Paper

[Paper 3.5MB]  [arXiv]

Code

Prerequisites:

  • NVIDIA GPU + CUDA CuDNN
  • Python 3.6
  • PyTorch 1.0
  • Please install dependencies by
pip install -r requirements.txt

Preparation

  • Clone this repo with its submodules
git clone --recurse-submodules -j8 https://github.com/azadis/SB-GAN.git
cd SB-GAN/SPADE/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../../

Datasets

ADE-Indoor

  • To have access to the indoor images from the ADE20K dataset and their corresponding segmentation maps used in our paper:
cd SB-GAN
bash SBGAN/datasets/download_ade.sh
cd ..

Cityscapes

cd SB-GAN/SBGAN/datasets
mkdir cityscapes
cd cityscapes
  • Download and unzip leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip from the Cityscapes webpage .
mv leftImg8bit_trainvaltest/leftImg8bit ./
mv gtFine_trainvaltest/gtFine ./

Cityscapes-25k

  • In addition to the 5K portion already downloaded, download and unzip leftImg8bit_trainextra.zip. You can have access to the fine annotations of these 20K images we used in our paper by:
wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/drn_d_105_000_test.tar.gz
tar -xzvf drn_d_105_000_test.tar.gz

These annotations are predicted by a DRN trained on the 5K fine-annotated portion of Cityscapes with 19 semantic categories. The new fine annotations of the 5K portion with 19 semantic classes can be also downloaded by:

wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/gtFine_new.tar.gz
tar -xzvf gtFine_new.tar.gz
cd ../../../..

Training

cd SB-GAN/SBGAN

  • On each $dataset in ade_indoor, cityscapes, cityscapes_25k:
  1. Semantic bottleneck synthesis:
bash SBGAN/scipts/$dataset/train_progressive_seg.sh
  1. Semantic image synthesis:
cd ../SPADE
bash scripts/$dataset/train_spade.sh
  1. Train the end2end SBGAN model:
cd ../SBGAN
bash SBGAN/scripts/$dataset/train_finetune_end2end.sh
  • In the above script, set $pro_iter to the iteration number of the checkpoint saved from step 1 that you want to use before fine-tuning. Also, set $spade_epoch to the last epoch saved for SPADE from step 2.
  • To visualize the training you have started in steps 1 and 3 on a ${date-time}, run the following commands. Then, open http://localhost:6006/ on your web browser.
cd SBGAN/logs/${date-time}
tensorboard --logdir=. --port=6006

Testing

To compute FID after training the end2end model, for each $dataset, do:

bash SBGAN/scripts/$dataset/test_finetune_end2end.sh
  • In the above script, set $pro_iter and $spade_epoch to the appropriate checkpoints saved from your end2end training.

Citation

If you use this code, please cite our paper:

@article{azadi2019semantic,
  title={Semantic Bottleneck Scene Generation},
  author={Azadi, Samaneh and Tschannen, Michael and Tzeng, Eric and Gelly, Sylvain and Darrell, Trevor and Lucic, Mario},
  journal={arXiv preprint arXiv:1911.11357},
  year={2019}
}
Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022