CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

Overview

CoMoGAN: Continuous Model-guided Image-to-Image Translation

Official repository.

Paper

CoMoGAN

CoMoGAN

CoMoGAN: continuous model-guided image-to-image translation [arXiv] | [supp] | [teaser]
Fabio Pizzati, Pietro Cerri, Raoul de Charette
Inria, Vislab Ambarella. CVPR'21 (oral)

If you find our work useful, please cite:

@inproceedings{pizzati2021comogan,
  title={{CoMoGAN}: continuous model-guided image-to-image translation},
  author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

Tested with:

  • Python 3.7
  • Pytorch 1.7.1
  • CUDA 11.0
  • Pytorch Lightning 1.1.8
  • waymo_open_dataset 1.3.0

Preparation

The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).

Environment setup

We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with

conda env create -f requirements.yml
conda activate comogan

Dataset preparation

First, download the Waymo Open Dataset from the official website. The dataset is organized in .tfrecord files, which we preprocess and split depending on metadata annotations on time of day. Once you downloaded the dataset, you should run the dump_waymo.py script. It will read and unpack the .tfrecord files, also resizing the images for training. Please run

python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images

Running those commands should result in a similar directory structure:

root
  training
    Day
      seq_code_0_im_code_0.png
      seq_code_0_im_code_1.png
      ...
      seq_code_1_im_code_0.png
      ...
  Dawn/Dusk
      ...
  Night
      ...
  validation
    Day
      ...
    Dawn/Dusk
      ...
    Night
      ...

Pretrained weights

We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from here. Once downloaded, unpack the file in the root of the project and test them with the inference notebook.

Training

The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.

To launch a default training, run

python train.py --path_data path/to/waymo/training/dir --gpus 0

You can choose on which GPUs to train with the --gpus flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run

python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision

Please note that performances on mixed precision trainings are evaluated only qualitatively.

Experiment organization

In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the logs folder, which is structured in this way:

logs/
  train_ID_0
    tensorboard/default/version_0
      checkpoints
        model_35000.pth
        ...
      hparams.yaml
      tb_log_file
  train_ID_1
    ...

In the checkpoints folder, all the intermediate checkpoints will be stored. hparams.yaml contains all the hyperparameters for a given run. You can launch a tensorboard --logdir train_ID instance on training directories to visualize intermediate outputs and loss functions.

To resume a previously stopped training, running

python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0

will load the latest checkpoint from a given train ID checkpoints directory.

Extending the code

Command line arguments

We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:

  • --debug: Disables logging and experiment saving. Useful for testing code modifications.
  • --model: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in networks folder)
  • --data_importer: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in data folder).
  • --learning_rate: Modifies learning rate, default value for CoMo-MUNIT is 1e-4.
  • --scheduler_policy: You can choose among linear os step policy, taken respectively from CycleGAN and MUNIT training routines. Default is step.
  • --decay_iters_step: For step policy, how many iterations before reducing learning rate
  • --decay_step_gamma: Regulates how much to reduce the learning rate
  • --seed: Random seed initialization

The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.

Changing model and dataset requires extending the networks/base_model.py and data/base_dataset.py class, respectively. Please look into CycleGAN repository for further instructions.

Model, dataset and other options

Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in munch dictionaries in the relative classes. For instance, in networks/comomunit_model.py you can find all customizable options for CoMo-MUNIT. The same is valid for data/day2timelapse_dataset.py. The options folder includes additional options on checkpoint saving intervals and logging.

Inference

Once you trained a model, you can use the infer.ipynb notebook to visualize translation results. After having launched a notebook instance, you will be required to select the train_id of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.

You can also use the translate.py script to translate all the images inside a directory or a sequence of images to another target directory.

python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14

Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.

  • --phi: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
  • --sequence: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like --sequence segment-10203656353524179475
  • --checkpoint: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like --checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth

Docker

You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code. To build it and to run it :

docker build -t notebook/comogan:1.0 .
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
  • --gpus: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
  • -v: mount the local directory that contained your dataset
  • -p: this option is only used for the infer.ipynb notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer ssh [email protected] -NL 8888:127.0.0.1:8888
Owner
Codes from Computer Vision group of RITS Team, Inria
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023