PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

Overview

DECOR-GAN

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri.

Paper | Oral video | GUI demo video

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021decor,
  title={DECOR-GAN: 3D Shape Detailization by Conditional Refinement},
  author={Zhiqin Chen and Vladimir G. Kim and Matthew Fisher and Noam Aigerman and Hao Zhang and Siddhartha Chaudhuri},
  journal={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Dependencies

Requirements:

  • Python 3.6 with numpy, h5py, scipy, sklearn and Cython
  • PyTorch 1.5 (other versions may also work)
  • PyMCubes (for marching cubes)
  • OpenCV-Python (for reading and writing images)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preparation.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Training

To train the network:

python main.py --data_style style_chair_64 --data_content content_chair_train --data_dir ./data/03001627/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 128 --train --gpu 0 --epoch 20
python main.py --data_style style_plane_32 --data_content content_plane_train --data_dir ./data/02691156/ --alpha 0.1 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_car_32 --data_content content_car_train --data_dir ./data/02958343/ --alpha 0.2 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_table_64 --data_content content_table_train --data_dir ./data/04379243/ --alpha 0.2 --beta 10.0 --input_size 16 --output_size 128 --train --gpu 0 --epoch 50
python main.py --data_style style_motor_16 --data_content content_motor_all_repeat20 --data_dir ./data/03790512/ --alpha 0.5 --beta 10.0 --input_size 64 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_laptop_32 --data_content content_laptop_all_repeat5 --data_dir ./data/03642806/ --alpha 0.2 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_plant_20 --data_content content_plant_all_repeat8 --data_dir ./data/03593526_03991062/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20

Note that style_chair_64 means the model will be trained with 64 detailed chairs. You can modify the list of detailed shapes in folder splits, such as style_chair_64.txt. You can also modify the list of content shapes in folder splits. The parameters input_size and output_size specify the resolutions of the input and output voxels. Valid settings are as follows:

Input resolution Output resolution Upsampling rate
64 256 x4
32 128 x4
32 256 x8
16 128 x8

GUI application

To launch UI for a pre-trained model, replace --data_content to the testing content shapes and replace --train with --ui.

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --ui --gpu 0

Testing

These are examples for testing a model trained with 32 detailed chairs. For others, please change the commands accordingly.

Rough qualitative testing

To output a few detailization results (the first 16 content shapes x 32 styles) and a T-SNE embedding of the latent space:

python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --test --gpu 0

The output images can be found in folder samples.

IOU, LP, Div

To test Strict-IOU, Loose-IOU, LP-IOU, Div-IOU, LP-F-score, Div-F-score:

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvoxstyle --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvox --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalvox --gpu 0

The first command prepares the patches in 64 detailed training shapes, thus --data_style is style_chair_64. Specifically, it removes duplicated patches in each detailed training shape and only keep unique patches for faster computation in the following testing procedure. The unique patches are written to folder unique_patches. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder unique_patches or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_IOU_mean.txt, result_LP_Div_Fscore_mean.txt, result_LP_Div_IOU_mean.txt ).

Cls-score

To test Cls-score:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimgreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimg --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalimg --gpu 0

The first command prepares rendered views of all content shapes, thus --data_content is content_chair_all. The rendered views are written to folder render_real_for_eval. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder render_real_for_eval or make a symbolic link.

The second command runs the model and outputs rendered views of the detailization results, in folder render_fake_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_Cls_score.txt ).

FID

To test FID-all and FID-style, you need to first train a classification model on shapeNet. You can use the provided pre-trained weights here (Clsshapenet_128.pth and Clsshapenet_256.pth for 1283 and 2563 inputs).

Backup links:

In case you need to train your own model, modify shapenet_dir in evalFID.py and run:

python main.py --prepFIDmodel --output_size 128 --gpu 0
python main.py --prepFIDmodel --output_size 256 --gpu 0

After you have the pre-trained classifier, use the following commands:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFIDreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFID --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalFID --gpu 0

The first command computes the mean and sigma vectors for real shapes and writes to precomputed_real_mu_sigma_128_content_chair_all_num_style_16.hdf5. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the output hdf5 file or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_FID.

The third command evaluates the outputs. The results are written to folder eval_output ( result_FID.txt ).

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022