A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

Overview

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

This repository contains a PyTorch implementation for the paper: Deep Pyramidal Residual Networks (CVPR 2017, Dongyoon Han*, Jiwhan Kim*, and Junmo Kim, (equally contributed by the authors*)). The code in this repository is based on the example provided in PyTorch examples and the nice implementation of Densely Connected Convolutional Networks.

Two other implementations with LuaTorch and Caffe are provided:

  1. A LuaTorch implementation for PyramidNets,
  2. A Caffe implementation for PyramidNets.

Usage examples

To train additive PyramidNet-200 (alpha=300 with bottleneck) on ImageNet-1k dataset with 8 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --data ~/dataset/ILSVRC/Data/CLS-LOC/ --net_type pyramidnet --lr 0.05 --batch_size 128 --depth 200 -j 16 --alpha 300 --print-freq 1 --expname PyramidNet-200 --dataset imagenet --epochs 100

To train additive PyramidNet-110 (alpha=48 without bottleneck) on CIFAR-10 dataset with a single-GPU:

CUDA_VISIBLE_DEVICES=0 python train.py --net_type pyramidnet --alpha 64 --depth 110 --no-bottleneck --batch_size 32 --lr 0.025 --print-freq 1 --expname PyramidNet-110 --dataset cifar10 --epochs 300

To train additive PyramidNet-164 (alpha=48 with bottleneck) on CIFAR-100 dataset with 4 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --net_type pyramidnet --alpha 48 --depth 164 --batch_size 128 --lr 0.5 --print-freq 1 --expname PyramidNet-164 --dataset cifar100 --epochs 300

Notes

  1. This implementation contains the training (+test) code for add-PyramidNet architecture on ImageNet-1k dataset, CIFAR-10 and CIFAR-100 datasets.
  2. The traditional data augmentation for ImageNet and CIFAR datasets are used by following fb.resnet.torch.
  3. The example codes for ResNet and Pre-ResNet are also included.
  4. For efficient training on ImageNet-1k dataset, Intel MKL and NVIDIA(nccl) are prerequistes. Please check the official PyTorch github for the installation.

Tracking training progress with TensorBoard

Thanks to the implementation, which support the TensorBoard to track training progress efficiently, all the experiments can be tracked with tensorboard_logger.

Tensorboard_logger can be installed with

pip install tensorboard_logger

Paper Preview

Abstract

Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolution layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. At the same time, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the capability of high-level attributes. Moreover, this also applies to residual networks and is very closely related to their performance. In this research, instead of using downsampling to achieve a sharp increase at each residual unit, we gradually increase the feature map dimension at all the units to involve as many locations as possible. This is discussed in depth together with our new insights as it has proven to be an effective design to improve the generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR datasets have shown that our network architecture has a superior generalization ability compared to the original residual networks.

Schematic Illustration

We provide a simple schematic illustration to compare the several network architectures, which have (a) basic residual units, (b) bottleneck, (c) wide residual units, and (d) our pyramidal residual units, and (e) our pyramidal bottleneck residual units, as follows:

image

Experimental Results

  1. The results are readily reproduced, which show the same performances as those reproduced with A LuaTorch implementation for PyramidNets.

  2. Comparison of the state-of-the-art networks by [Top-1 Test Error Rates VS # of Parameters]:

image

  1. Top-1 test error rates (%) on CIFAR datasets are shown in the following table. All the results of PyramidNets are produced with additive PyramidNets, and α denotes alpha (the widening factor). “Output Feat. Dim.” denotes the feature dimension of just before the last softmax classifier.

image

ImageNet-1k Pretrained Models

  • A pretrained model of PyramidNet-101-360 is trained from scratch using the code in this repository (single-crop (224x224) validation error rates are reported):
Network Type Alpha # of Params Top-1 err(%) Top-5 err(%) Model File
ResNet-101 (Caffe model) - 44.7M 23.6 7.1 Original Model
ResNet-101 (Luatorch model) - 44.7M 22.44 6.21 Original Model
PyramidNet-v1-101 360 42.5M 21.98 6.20 Download
  • Note that the above widely-used ResNet-101 (Caffe model) is trained with the images, where the pixel intensities are in [0,255] and are centered by the mean image, our PyramidNet-101 is trained with the images where the pixel values are standardized.
  • The model is originally trained with PyTorch-0.4, and the keys of num_batches_tracked were excluded for convenience (the BatchNorm2d layer in PyTorch (>=0.4) contains the key of num_batches_tracked by track_running_stats).

Updates

  1. Some minor bugs are fixed (2018/02/22).
  2. train.py is updated (including ImagNet-1k training code) (2018/04/06).
  3. resnet.py and PyramidNet.py are updated (2018/04/06).
  4. preresnet.py (Pre-ResNet architecture) is uploaded (2018/04/06).
  5. A pretrained model using PyTorch is uploaded (2018/07/09).

Citation

Please cite our paper if PyramidNets are used:

@article{DPRN,
  title={Deep Pyramidal Residual Networks},
  author={Han, Dongyoon and Kim, Jiwhan and Kim, Junmo},
  journal={IEEE CVPR},
  year={2017}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Dongyoon Han ([email protected]), Jiwhan Kim ([email protected]), Junmo Kim ([email protected])

Owner
Greg Dongyoon Han
Greg Dongyoon Han
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022