SMD-Nets: Stereo Mixture Density Networks

Related tags

Deep LearningSMD-Nets
Overview

SMD-Nets: Stereo Mixture Density Networks

Alt text

This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021) by Fabio Tosi, Yiyi Liao, Carolin Schmitt and Andreas Geiger

Contributions:

  • A novel learning framework for stereo matching that exploits compactly parameterized bimodal mixture densities as output representation and can be trained using a simple likelihood-based loss function. Our simple formulation lets us avoid bleeding artifacts at depth discontinuities and provides a measure for aleatoric uncertainty.

  • A continuous function formulation aimed at estimating disparities at arbitrary spatial resolution with constant memory footprint.

  • A new large-scale synthetic binocular stereo dataset with ground truth disparities at 3840×2160 resolution, comprising photo-realistic renderings of indoor and outdoor environments.

For more details, please check:

[Paper] [Supplementary] [Poster] [Video] [Blog]

If you find this code useful in your research, please cite:

@INPROCEEDINGS{Tosi2021CVPR,
  author = {Fabio Tosi and Yiyi Liao and Carolin Schmitt and Andreas Geiger},
  title = {SMD-Nets: Stereo Mixture Density Networks},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
} 

Requirements

This code was tested with Python 3.8, Pytotch 1.8, CUDA 11.2 and Ubuntu 20.04.
All our experiments were performed on a single NVIDIA Titan V100 GPU.
Requirements can be installed using the following script:

pip install -r requirements

Datasets

We create our synthetic dataset, UnrealStereo4K, using the popular game engine Unreal Engine combined with the open-source plugin UnrealCV.

UnrealStereo4K

Our photo-realistic synthetic passive binocular UnrealStereo4K dataset consists of images of 8 static scenes, including indoor and outdoor environments. We rendered stereo pairs at 3840×2160 resolution for each scene with pixel-accurate ground truth disparity maps (aligned with both the left and the right images!) and ground truth poses.

You can automatically download the entire synthetic binocular stereo dataset using the download_data.sh script in the scripts folder. In alternative, you can download each scene individually:

UnrealStereo4K_00000.zip [74 GB]
UnrealStereo4K_00001.zip [73 GB]
UnrealStereo4K_00002.zip [74 GB]
UnrealStereo4K_00003.zip [73 GB]
UnrealStereo4K_00004.zip [72 GB]
UnrealStereo4K_00005.zip [74 GB]
UnrealStereo4K_00006.zip [67 GB]
UnrealStereo4K_00007.zip [76 GB]
UnrealStereo4K_00008.zip [16 GB] - It contains 200 stereo pairs only, used as out-of-domain test set

Warning!: All the RGB images are PNG files at 8 MPx. This notably slows down the training process due to the expensive dataloading operation. Thus, we suggest compressing the images to raw binary files to speed up the process and trainings (Pay attention to edit the filenames accordingly). You can use the following code to convert (offline) the stereo images (Image0 and Image1 folders) to a raw format:

img_path=/path/to/the/image
out = open(img_path.replace("png", "raw"), 'wb') 
img = cv2.imread(img_path, -1)
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
img.tofile(out)
out.close()

Training

All training and testing scripts are provided in the scripts folder.
As an example, use the following command to train SMD-Nets on our UnrealStereo4K dataset.

python apps/train.py --dataroot $dataroot \
                     --checkpoints_path $checkpoints_path \
                     --training_file $training_file \
                     --testing_file $testing_file \
                     --results_path $results_path \
                     --mode $mode \
                     --name $name \
                     --batch_size $batch_size \
                     --num_epoch $num_epoch \
                     --learning_rate $learning_rate \
                     --gamma $gamma \
                     --crop_height $crop_height \
                     --crop_width $crop_width \
                     --num_sample_inout $num_sample_inout \
                     --aspect_ratio $aspect_ratio \
                     --sampling $sampling \
                     --output_representation $output_representation \
                     --backbone $backbone

For a detailed description of training options, please take a look at lib/options.py

In order to monitor and visualize the training process, you can start a tensorboard session with:

tensorboard --logdir checkpoints

Evaluation

Use the following command to evaluate the trained SMD-Nets on our UnrealStereo4K dataset.

python apps/test.py --dataroot $dataroot \
                    --testing_file $testing_file \
                    --results_path $results_path \
                    --mode $mode \
                    --batch_size 1 \
                    --superes_factor $superes_factor \
                    --aspect_ratio $aspect_ratio \
                    --output_representation $output_representation \
                    --load_checkpoint_path $checkpoints_path \
                    --backbone $backbone 

Warning! The soft edge error (SEE) on the KITTI dataset requires instance segmentation maps from the KITTI 2015 dataset.

Stereo Ultra High-Resolution: if you want to estimate a disparity map at arbitrary spatial resolution given a low resolution stereo pair at testing time, just use a different value for the superres_factor parameter (e.g. 2,4,8..32!). Below, a comparison of our model using the PSMNet backbone at 128Mpx resolution (top) and the original PSMNet at 0.5Mpx resolution (bottom), both taking stereo pairs at 0.5Mpx resolution as input.

Pretrained models

You can download pre-trained models on our UnrealStereo4K dataset from the following links:

Qualitative results

Disparity Visualization. Some qualitative results of the proposed SMD-Nets using PSMNet as stereo backbone. From left to right, the input image from the UnrealStereo4K test set, the predicted disparity and the corresponding error map. Please zoom-in to better perceive details near depth boundaries.

Point Cloud Visualization. Below, instead, we show point cloud visualizations on UnrealStereo4K for both the passive binocular stereo and the active depth datasets, adopting HSMNet as backbone. From left to right, the reference image, the results obtained using a standard disparity regression (i.e., disparity point estimate), a unimodal Laplacian distribution and our bimodal Laplacian mixture distribution. Note that our bimodal representation notably alleviates bleeding artifacts near object boundaries compared to both disparity regression and the unimodal formulation.

Contacts

For questions, please send an email to [email protected]

Acknowledgements

We thank the authors that shared the code of their works. In particular:

  • Jia-Ren Chang for providing the code of PSMNet.
  • Gengshan Yang for providing the code of HSMNet.
  • Clement Godard for providing the code of Monodepth (extended to Stereodepth).
  • Shunsuke Saito for providing the code of PIFu
Owner
Fabio Tosi
Postdoc Researcher at University of Bologna - Computer Science and Engineering
Fabio Tosi
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022