Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Overview

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021)

Paper

Introduction

The conventional detectors tend to make imbalanced classification and suffer performance drop, when the distribution of the training data is severely skewed. In this paper, we propose to use the mean classification score to indicate the classification accuracy for each category during training. Based on this indicator, we balance the classification via an Equilibrium Loss (EBL) and a Memory-augmented Feature Sampling (MFS) method. Specifically, EBL increases the intensity of the adjustment of the decision boundary for the weak classes by a designed score-guided loss margin between any two classes. On the other hand, MFS improves the frequency and accuracy of the adjustments of the decision boundary for the weak classes through over-sampling the instance features of those classes. Therefore, EBL and MFS work collaboratively for finding the classification equilibrium in long-tailed detection, and dramatically improve the performance of tail classes while maintaining or even improving the performance of head classes. We conduct experiments on LVIS using Mask R-CNN with various backbones including ResNet-50-FPN and ResNet-101-FPN to show the superiority of the proposed method. It improves the detection performance of tail classes by 15.6 AP, and outperforms the most recent long-tailed object detectors by more than 1 AP.

Method overview

method overview

Memory-augmented Feature Sampling (MFS)

method overview

Prerequisites

  • MMDetection version 2.8.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with LVIS v1.0 dataset in 'data/lvis_v1/'.
# use decoupled training pipeline:

# 1. train the model with Mask R-CNN
./tools/dist_train.sh configs/loce/mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

# 2. fine-tune the model with LOCE
./tools/dist_train.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

Inference

./tools/dist_test.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py work_dirs/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1/epoch_6.pth 8 --eval bbox segm

Models

For your convenience, we provide the following trained models (LOCE). All models are trained with 16 images in a mini-batch.

Model Dataset MS train box AP mask AP Pretrained Model LOCE
LOCE_R_50_FPN_2x LVIS v0.5 Yes 28.2 28.4 config / model config / model
LOCE_R_50_FPN_2x LVIS v1.0 Yes 27.4 26.6 config / model config / model
LOCE_R_101_FPN_2x LVIS v1.0 Yes 29.0 28.0 config / model config / model

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/loce/.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find LOCE useful in your research, please consider citing:

@inproceedings{feng2021exploring,
    title={Exploring Classification Equilibrium in Long-Tailed Object Detection},
    author={Feng, Chengjian and Zhong, Yujie and Huang, Weilin},
    booktitle={ICCV},
    year={2021}
}
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022