Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Overview

Auto-Seg-Loss

By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai

This is the official implementation of the ICLR 2021 paper Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation.

Introduction

TL; DR.

Auto Seg-Loss is the first general framework for searching surrogate losses for mainstream semantic segmentation metrics.

Abstract.

Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks.

ASL-overview ASL-results

License

This project is released under the Apache 2.0 license.

Citing Auto Seg-Loss

If you find Auto Seg-Loss useful in your research, please consider citing:

@inproceedings{li2020auto,
  title={Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation},
  author={Li, Hao and Tao, Chenxin and Zhu, Xizhou and Wang, Xiaogang and Huang, Gao and Dai, Jifeng},
  booktitle={ICLR},
  year={2021}
}

Configs

PASCAL VOC Search experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Parameterization bezier bezier bezier bezier bezier bezier
URL config config config config config config

PASCAL VOC Re-training experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Cross Entropy 78.69 91.31 87.31 95.17 70.61 65.30
ASL 80.97 91.93 92.95 95.22 79.27 74.83
URL config
log
config
log
config
log
config
log
config
log
config
log

Note:

1. The search experiments are conducted with R50-DeepLabV3+.

2. The re-training experiments are conducted with R101-DeeplabV3+.

Installation

Our implementation is based on MMSegmentation.

Prerequisites

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n auto_segloss python=3.8 -y

    Then, activate the environment:

    conda activate auto_segloss
  • PyTorch>=1.7.0, torchvision>=0.8.0 (following official instructions).

    For example, if your CUDA version is 10.1, you could install pytorch and torchvision as follows:

    conda install pytorch=1.8.0 torchvision=0.9.0 cudatoolkit=10.1 -c pytorch
  • MMCV>=1.3.0 (following official instruction).

    We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.8.0, you could run:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html

Installing the modified mmsegmentation

git clone https://github.com/fundamentalvision/Auto-Seg-Loss.git
cd Auto-Seg-Loss
pip install -e .

Usage

Dataset preparation

Please follow the official guide of MMSegmentation to organize the datasets. It's highly recommended to symlink the dataset root to Auto-Seg-Loss/data. The recommended data structure is as follows:

Auto-Seg-Loss
├── mmseg
├── ASL_search
└── data
    └── VOCdevkit
        ├── VOC2012
        └── VOCaug

Training models with the provided parameters

The re-training command format is

./ASL_retrain.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for training a ResNet-101 DeepLabV3+ with 4 GPUs for mIoU is as follows:

./ASL_retrain.sh miou_bezier_10k.py 4

You can also follow the provided configs to modify the mmsegmentation configs, and use Auto Seg-Loss for training other models on other datasets.

Searching for semantic segmentation metrics

The search command format is

./ASL_search.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for searching for surrogate loss functions for mIoU with 8 GPUs is as follows:

./ASL_search.sh miou_bezier_lr=0.2_eps=0.2.py 8
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022