A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

Overview

An Introduction to Deep Learning for the Physical Layer

An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Introduction to Deep Learning for the Physical Layer" by Kenta Iwasaki on behalf of Gram.AI.

Overall a fun experiment for constructing a communications system for the physical layer with transmitters/receivers in which the transmitter efficiently encodes a signal in a way such that the receiver can still, with minimal error, decode this encoded signal despite being inflicted with noise in amidst transmission.

The signal dimension for the encoded message is set to be 4, with the compressed signal representation's channel size being 2 (log_2(signal_dim)) to maximize information/bit as a basis to the principles of shannon entropy.

The signal-to-noise ratio simulated in amidst training is 7dbW. That may be changed accordingly to your preferences.

Checks for the bit error rate have been ignored for the decoder, and instead the reconstruction of the input based on categorical cross-entropy is used to validate model generalization and performance.

Training for the model is done using TorchNet.

Description

We present and discuss several novel applications of deep learning (DL) for the physical layer. By interpreting a communications system as an autoencoder, we develop a fundamental new way to think about communications system design as an end-to-end reconstruction task that seeks to jointly optimize transmitter and receiver components in a single process. We show how this idea can be extended to networks of multiple transmitters and receivers and present the concept of radio transformer networks (RTNs) as a means to incorporate expert domain knowledge in the machine learning (ML) model. Lastly, we demonstrate the application of convolutional neural networks (CNNs) on raw IQ samples for modulation classification which achieves competitive accuracy with respect to traditional schemes relying on expert features. The paper is concluded with a discussion of open challenges and areas for future investigation.

Paper written by Tim O'Shea and Jakob Hoydis. For more information, please check out the paper here.

Requirements

  • Python 3
  • PyTorch
  • TorchNet
  • TQDM

Usage

Step 1 Start training.

$ python3 radio_transformer_networks.py

Step 2 Call model.decode_signal(x) on any noisy data on the transmitter's end.

Benchmarks

Achieves 100% within a span of ~30 epochs.

Default PyTorch Adam optimizer hyperparameters were used with no learning rate scheduling. Epochs with batch size of 256 takes half a second on a Razer Blade w/ GTX 1050.

TODO

  • Signal modulation classification using convolutional neural networks as outlined on the paper.

Contact/Support

Gram.AI is currently heavily developing a wide number of AI models to be either open-sourced or released for free to the community, hence why we cannot guarantee complete support for this work.

If any issues come up with the usage of this implementation however, or if you would like to contribute in any way, please feel free to send an e-mail to [email protected] or open a new GitHub issue on this repository.

Owner
Gram.AI
Machine-learning models for the community done in gram-sized proportions.
Gram.AI
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022