Pytorch Implementation for (STANet+ and STANet)

Related tags

Deep LearningSTANet
Overview

Pytorch Implementation for (STANet+ and STANet)

V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:V2

V1-From Semantic Categories to Fixations: A Novel Weakly-supervised Visual-auditory Saliency Detection Approach (CVPR2021), pdf:V1


Introduction

  • This repository contains the source code, results, and evaluation toolbox of STANet+ (V2), which are the journal extension version of our paper STANet (V1) published at CVPR-2021.
  • Compared our conference version STANet (V2), which has been extended in two distinct aspects.
    First on the basis of multisource and multiscale perspectives which have been adopted by the CVPR version (V1), we have provided a deep insight into the relationship between multigranularity perception (Fig.2) and real human attention behaved in visual-auditory environment.
    Second without using any complex networks, we have provided an elegant framework to complementary integrate multisource, multiscale, and multigranular information (Fig.1) to formulate pseudofixations which are very consistent with the real ones. Apart from achieving significant performance gain, this work also provides a comprehensive solution for mimicking multimodality attention.

Figure 1: STANet+ mainly focuses on devising a weakly supervised approach for the spatial-temporal-audio (STA) fixation prediction task, where the key innovation is that, as one of the first attempts, we automatically convert semantic category tags to pseudofixations via the newly proposed selective class activation mapping (SCAM) and the upgraded version SCAM+ that has been additionally equipped with the multigranularity perception ability. The obtained pseudofixations can be used as the learning objective to guide knowledge distillation to teach two individual fixation prediction networks (i.e., STA and STA+), which jointly enable generic video fixation prediction without requiring any video tags.

Figure 2: Some representative ’fixation shifting’ cases, additional multigranularity information (i.e., long/crossterm information) has been shown before collecting fixations in A_SRC. Clearly, by comparing A_FIX0, A_FIX1, and A _FIX2, we can easily notice that the multigranularity information could draw human attention to the most meaningful objects and make the fixations to be more focused.

Dependencies

  • Windows10
  • NVIDIA GeForce RTX 2070 SUPER & NVIDIA GeForce RTX 1080Ti
  • python 3.6.4
  • Matlab R2016b
  • pytorch 1.8.0
  • soundmodel

Preparation

Downloading the official pretrained visual and audio model

Visual:resnext101_32x8d, vgg16
Audio: vggsound, net = torch.load('vggsound_netvlad').

Downloading the training dataset and testing dataset:

Training dataset: AVE(Audio Visual Event Location).
Testing dataset: AVAD, DIEM, SumMe, ETMD, Coutrot.

Training

Note
We use Fourier-transform to transform audio features as audio stream input, therefore, you firstly need to use the function audiostft.py to convert the audio files (.wav) to get the audio features(.h5).

Step 1. SCAM training

Coarse: Separately training branches of Scoarse, SAcoarse, STcoarse ,it should be noted that the coarse stage is coarse location, so the size is set to 256 to ensure object-wise location accuracy.
Fine: Separately re-training branches of Sfine, SAfine, STfine,it should be noted that the fine stage is a fine location, so the size is set to 356 to ensure regional location exactness.

Step2. SCAM+ training

S+: Separately training branches of S+short, S+long, S+cross, because it is frame-wise relational reasoning network, the network is the same, so we only need to change the source of the input data.
SA+: Separately training branches of SA+long, SA+cross.
ST+: Separately training branches of ST+short, ST+long, ST+cross.

Step 3. pseudoGT generation

In order to facilitate the display of matrix data processing, Matlab2016b was performed in coarse location of inter-frame smoothing and pseudo GT data post-processing.

Step 4. STA and STA+ training

Training the model of STA and STA+ using the AVE video frames with the generated pseudoGT.

Testing

Step 1. Using the function audiostft.py to convert the audio files (.wav) to get the audio features (.h5).
Step 2. Testing STA, STA+ network, fusing the test results to generate final saliency results.(STANet+)

The model weight file STANet+, STANet, AudioSwitch:
(Baidu Netdisk, code:6afo).

Evaluation

We use the evaluation code in the paper of STAVIS for fair comparisons.
You may need to revise the algorithms, data_root, and maps_root defined in the main.m.
We provide the saliency maps of the SOTA:

(STANet+, STANet, ITTI, GBVS, SCLI, AWS-D, SBF, CAM, GradCAM, GradCAMpp, SGradCAMpp, xGradCAM, SSCAM, ScoCAM, LCAM, ISCAM, ACAM, EGradCAM, ECAM, SPG, VUNP, WSS, MWS, WSSA).
(Baidu Netdisk, code:6afo).

Quantitative comparisons:

Qualitative results of our method and eight representative saliency models: ITTI, GBVS, SCLI, SBF, AWS-D, WSS, MWS, WSSA. It can be observed that our method is able to handle various challenging scenes well and produces more accurate results than other competitors.

Qualitative comparisons:

Quantitative comparisons between our method with other fully-/weakly-/un-supervised methods on 6 datasets. Bold means the best result, " denotes the higher the score, the better the performance.

References

[1][Tsiami, A., Koutras, P., Maragos, P.STAViS: Spatio-Temporal AudioVisual Saliency Network. (CVPR 2020).] (https://openaccess.thecvf.com/content_CVPR_2020/papers/Tsiami_STAViS_Spatio-Temporal_AudioVisual_Saliency_Network_CVPR_2020_paper.pdf)
[2][Tian, Y., Shi, J., Li, B., Duan, Z., Xu, C. Audio-Visual Event Localization in Unconstrained Videos. (ECCV 2018)] (https://openaccess.thecvf.com/content_ECCV_2018/papers/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.pdf)
[3][Chen, H., Xie, W., Vedaldi, A., & Zisserman, A. Vggsound: A Large-Scale Audio-Visual Dataset. (ICASSP 2020)] (https://www.robots.ox.ac.uk/~vgg/publications/2020/Chen20/chen20.pdf)

Citation

If you find this work useful for your research, please consider citing the following paper:

@InProceedings{Wang_2021_CVPR,  
    author    = {Wang, Guotao and Chen, Chenglizhao and Fan, Deng-Ping and Hao, Aimin and Qin, Hong},
    title     = {From Semantic Categories to Fixations: A Novel Weakly-Supervised Visual-Auditory Saliency Detection Approach},  
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
    month     = {June},  
    year      = {2021},  
    pages     = {15119-15128}  
}  


@misc{wang2021weakly,
    title={Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception}, 
    author={Guotao Wang and Chenglizhao Chen and Dengping Fan and Aimin Hao and Hong Qin},
    year={2021},
    eprint={2112.13697},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
GuotaoWang
GuotaoWang
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021