[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Overview

Visual-Reasoning-eXplanation

[CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts]

Project Page | Video | Paper

Editor

Figure: An example result with the proposed VRX. To explain the prediction (i.e., fire engine and not alternatives like ambulance), VRX provides both visual and structural clues.

A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts
Yunhao Ge, Yao Xiao, Zhi Xu, Meng Zheng, Srikrishna Karanam, Terrence Chen, Laurent Itti, Ziyan Wu
IEEE/ CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2021

We considered the challenging problem of interpreting the reasoning logic of a neural network decision. We propose a novel framework to interpret neural networks which extracts relevant class-specific visual concepts and organizes them using structural concepts graphs based on pairwise concept relationships. By means of knowledge distillation, we show VRX can take a step towards mimicking the reasoning process of NNs and provide logical, concept-level explanations for final model decisions. With extensive experiments, we empirically show VRX can meaningfully answer “why” and “why not” questions about the prediction, providing easy-to-understand insights about the reasoning process. We also show that these insights can potentially provide guidance on improving NN’s performance.

Editor

Figure: Examples of representing images as structural concept graph.

Editor

Figure: Pipeline for Visual Reasoning Explanation framework.

Thanks for a re-implementation from sssufmug, we added more features and finish the whole pipeline.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/gyhandy/Visual-Reasoning-eXplanation.git
cd Visual-Reasoning-eXplanation
  • Dependencies
pip install -r requirements.txt

Datasets

  • We use a subset of ImageNet as our source data. There are intrested classes which want to do reasoning, such as fire angine, ambulance and school bus, and also other random images for discovering concepts. You can download the source data that we used in our paper here: source [http://ilab.usc.edu/andy/dataset/source.zip]

  • Input files for training GNN and doing reasoning. You can get these data by doing discover concepts and match concepts yourself, but we also provide those files to help you doing inference directly. You can download the result data here: result[http://ilab.usc.edu/andy/dataset/result.zip]

Datasets Preprocess

Unzip source.zip as well as result.zip, and then place them in ./source and ./result. If you only want to do inference, you can skip discover concept, match concept and training Structural Concept Graph (SCG).

Discover concept

For more information about discover concept, you can refer to ACE: Towards Automatic Concept Based Explanations. We use the pretrained model provided by tensorflow to discover cencept. With default setting you can simply run

python3 discover_concept.py

If you want to do this step with a custom model, you should write a wrapper for it containing the following methods:

run_examples(images, BOTTLENECK_LAYER): which basically returens the activations of the images in the BOTTLENECK_LAYER. 'images' are original images without preprocessing (float between 0 and 1)
get_image_shape(): returns the shape of the model's input
label_to_id(CLASS_NAME): returns the id of the given class name.
get_gradient(activations, CLASS_ID, BOTTLENECK_LAYER): computes the gradient of the CLASS_ID logit in the logit layer with respect to activations in the BOTTLENECK_LAYER.

If you want to discover concept with GradCam, please also implement a 'gradcam.py' for your model and place it into ./src. Then run:

python3 discover_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Match concept

This step will use the concepts you discovered in last step to match new images. If you want to match your own images, please put them into ./source and create a new folder named IMAGE_CLASS_NAME. Then run:

python3 macth_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Training Structural Concept Graph (SCG)

python3 VR_training_XAI.py

Then you can find the checkpoints of model in ./result/model.

Reasoning a image

For images you want to do reasoning, you should first doing match concept to extract concept knowledge. Once extracted graph knowledge for SCG, you can do the inference. For example, if you want to inference ./source/fire_engine/n03345487_19835.JPEG, the "img_class" is "ambulance" and "img_idx" is 10367, then run:

python3 Xception_WhyNot.py --img_class fire_engine --img_idx 19835

Some visualize results

Editor
Editor
Editor

Contact / Cite

Got Questions? We would love to answer them! Please reach out by email! You may cite us in your research as:

@inproceedings{ge2021peek,
  title={A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts},
  author={Ge, Yunhao and Xiao, Yao and Xu, Zhi and Zheng, Meng and Karanam, Srikrishna and Chen, Terrence and Itti, Laurent and Wu, Ziyan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2195--2204},
  year={2021}
}

We will post other relevant resources, implementations, applications and extensions of this work here. Please stay tuned

Owner
Andy_Ge
Ph.D. Student in USC, interested in Computer Vision, Machine Learning, and AGI
Andy_Ge
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023