[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Overview

Visual-Reasoning-eXplanation

[CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts]

Project Page | Video | Paper

Editor

Figure: An example result with the proposed VRX. To explain the prediction (i.e., fire engine and not alternatives like ambulance), VRX provides both visual and structural clues.

A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts
Yunhao Ge, Yao Xiao, Zhi Xu, Meng Zheng, Srikrishna Karanam, Terrence Chen, Laurent Itti, Ziyan Wu
IEEE/ CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2021

We considered the challenging problem of interpreting the reasoning logic of a neural network decision. We propose a novel framework to interpret neural networks which extracts relevant class-specific visual concepts and organizes them using structural concepts graphs based on pairwise concept relationships. By means of knowledge distillation, we show VRX can take a step towards mimicking the reasoning process of NNs and provide logical, concept-level explanations for final model decisions. With extensive experiments, we empirically show VRX can meaningfully answer “why” and “why not” questions about the prediction, providing easy-to-understand insights about the reasoning process. We also show that these insights can potentially provide guidance on improving NN’s performance.

Editor

Figure: Examples of representing images as structural concept graph.

Editor

Figure: Pipeline for Visual Reasoning Explanation framework.

Thanks for a re-implementation from sssufmug, we added more features and finish the whole pipeline.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/gyhandy/Visual-Reasoning-eXplanation.git
cd Visual-Reasoning-eXplanation
  • Dependencies
pip install -r requirements.txt

Datasets

  • We use a subset of ImageNet as our source data. There are intrested classes which want to do reasoning, such as fire angine, ambulance and school bus, and also other random images for discovering concepts. You can download the source data that we used in our paper here: source [http://ilab.usc.edu/andy/dataset/source.zip]

  • Input files for training GNN and doing reasoning. You can get these data by doing discover concepts and match concepts yourself, but we also provide those files to help you doing inference directly. You can download the result data here: result[http://ilab.usc.edu/andy/dataset/result.zip]

Datasets Preprocess

Unzip source.zip as well as result.zip, and then place them in ./source and ./result. If you only want to do inference, you can skip discover concept, match concept and training Structural Concept Graph (SCG).

Discover concept

For more information about discover concept, you can refer to ACE: Towards Automatic Concept Based Explanations. We use the pretrained model provided by tensorflow to discover cencept. With default setting you can simply run

python3 discover_concept.py

If you want to do this step with a custom model, you should write a wrapper for it containing the following methods:

run_examples(images, BOTTLENECK_LAYER): which basically returens the activations of the images in the BOTTLENECK_LAYER. 'images' are original images without preprocessing (float between 0 and 1)
get_image_shape(): returns the shape of the model's input
label_to_id(CLASS_NAME): returns the id of the given class name.
get_gradient(activations, CLASS_ID, BOTTLENECK_LAYER): computes the gradient of the CLASS_ID logit in the logit layer with respect to activations in the BOTTLENECK_LAYER.

If you want to discover concept with GradCam, please also implement a 'gradcam.py' for your model and place it into ./src. Then run:

python3 discover_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Match concept

This step will use the concepts you discovered in last step to match new images. If you want to match your own images, please put them into ./source and create a new folder named IMAGE_CLASS_NAME. Then run:

python3 macth_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Training Structural Concept Graph (SCG)

python3 VR_training_XAI.py

Then you can find the checkpoints of model in ./result/model.

Reasoning a image

For images you want to do reasoning, you should first doing match concept to extract concept knowledge. Once extracted graph knowledge for SCG, you can do the inference. For example, if you want to inference ./source/fire_engine/n03345487_19835.JPEG, the "img_class" is "ambulance" and "img_idx" is 10367, then run:

python3 Xception_WhyNot.py --img_class fire_engine --img_idx 19835

Some visualize results

Editor
Editor
Editor

Contact / Cite

Got Questions? We would love to answer them! Please reach out by email! You may cite us in your research as:

@inproceedings{ge2021peek,
  title={A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts},
  author={Ge, Yunhao and Xiao, Yao and Xu, Zhi and Zheng, Meng and Karanam, Srikrishna and Chen, Terrence and Itti, Laurent and Wu, Ziyan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2195--2204},
  year={2021}
}

We will post other relevant resources, implementations, applications and extensions of this work here. Please stay tuned

Owner
Andy_Ge
Ph.D. Student in USC, interested in Computer Vision, Machine Learning, and AGI
Andy_Ge
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022