[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Overview

Visual-Reasoning-eXplanation

[CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts]

Project Page | Video | Paper

Editor

Figure: An example result with the proposed VRX. To explain the prediction (i.e., fire engine and not alternatives like ambulance), VRX provides both visual and structural clues.

A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts
Yunhao Ge, Yao Xiao, Zhi Xu, Meng Zheng, Srikrishna Karanam, Terrence Chen, Laurent Itti, Ziyan Wu
IEEE/ CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2021

We considered the challenging problem of interpreting the reasoning logic of a neural network decision. We propose a novel framework to interpret neural networks which extracts relevant class-specific visual concepts and organizes them using structural concepts graphs based on pairwise concept relationships. By means of knowledge distillation, we show VRX can take a step towards mimicking the reasoning process of NNs and provide logical, concept-level explanations for final model decisions. With extensive experiments, we empirically show VRX can meaningfully answer “why” and “why not” questions about the prediction, providing easy-to-understand insights about the reasoning process. We also show that these insights can potentially provide guidance on improving NN’s performance.

Editor

Figure: Examples of representing images as structural concept graph.

Editor

Figure: Pipeline for Visual Reasoning Explanation framework.

Thanks for a re-implementation from sssufmug, we added more features and finish the whole pipeline.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/gyhandy/Visual-Reasoning-eXplanation.git
cd Visual-Reasoning-eXplanation
  • Dependencies
pip install -r requirements.txt

Datasets

  • We use a subset of ImageNet as our source data. There are intrested classes which want to do reasoning, such as fire angine, ambulance and school bus, and also other random images for discovering concepts. You can download the source data that we used in our paper here: source [http://ilab.usc.edu/andy/dataset/source.zip]

  • Input files for training GNN and doing reasoning. You can get these data by doing discover concepts and match concepts yourself, but we also provide those files to help you doing inference directly. You can download the result data here: result[http://ilab.usc.edu/andy/dataset/result.zip]

Datasets Preprocess

Unzip source.zip as well as result.zip, and then place them in ./source and ./result. If you only want to do inference, you can skip discover concept, match concept and training Structural Concept Graph (SCG).

Discover concept

For more information about discover concept, you can refer to ACE: Towards Automatic Concept Based Explanations. We use the pretrained model provided by tensorflow to discover cencept. With default setting you can simply run

python3 discover_concept.py

If you want to do this step with a custom model, you should write a wrapper for it containing the following methods:

run_examples(images, BOTTLENECK_LAYER): which basically returens the activations of the images in the BOTTLENECK_LAYER. 'images' are original images without preprocessing (float between 0 and 1)
get_image_shape(): returns the shape of the model's input
label_to_id(CLASS_NAME): returns the id of the given class name.
get_gradient(activations, CLASS_ID, BOTTLENECK_LAYER): computes the gradient of the CLASS_ID logit in the logit layer with respect to activations in the BOTTLENECK_LAYER.

If you want to discover concept with GradCam, please also implement a 'gradcam.py' for your model and place it into ./src. Then run:

python3 discover_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Match concept

This step will use the concepts you discovered in last step to match new images. If you want to match your own images, please put them into ./source and create a new folder named IMAGE_CLASS_NAME. Then run:

python3 macth_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Training Structural Concept Graph (SCG)

python3 VR_training_XAI.py

Then you can find the checkpoints of model in ./result/model.

Reasoning a image

For images you want to do reasoning, you should first doing match concept to extract concept knowledge. Once extracted graph knowledge for SCG, you can do the inference. For example, if you want to inference ./source/fire_engine/n03345487_19835.JPEG, the "img_class" is "ambulance" and "img_idx" is 10367, then run:

python3 Xception_WhyNot.py --img_class fire_engine --img_idx 19835

Some visualize results

Editor
Editor
Editor

Contact / Cite

Got Questions? We would love to answer them! Please reach out by email! You may cite us in your research as:

@inproceedings{ge2021peek,
  title={A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts},
  author={Ge, Yunhao and Xiao, Yao and Xu, Zhi and Zheng, Meng and Karanam, Srikrishna and Chen, Terrence and Itti, Laurent and Wu, Ziyan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2195--2204},
  year={2021}
}

We will post other relevant resources, implementations, applications and extensions of this work here. Please stay tuned

Owner
Andy_Ge
Ph.D. Student in USC, interested in Computer Vision, Machine Learning, and AGI
Andy_Ge
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022