Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Overview

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

This is a official implementation of the CycleContrast introduced in the paper:Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Citation

If you find our work useful, please cite:

@article{wu2021contrastive,
  title={Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency},
  author={Wu, Haiping and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2105.06463},
  year={2021}
}

Preparation

Our code is tested on Python 3.7 and Pytorch 1.3.0, please install the environment via

pip install -r requirements.txt

Model Zoo

We provide the model pretrained on R2V2 for 200 epochs.

method pre-train epochs on R2V2 dataset ImageNet Top-1 Linear Eval OTB Precision OTB Success UCF Top-1 pretrained model
MoCo 200 53.8 56.1 40.6 80.5 pretrain ckpt
CycleContrast 200 55.7 69.6 50.4 82.8 pretrain ckpt

Run Experiments

Data preparation

Download R2V2 (Random Related Video Views) dataset according to https://github.com/danielgordon10/vince.

The direction structure should be as followed:

CycleContrast
├── cycle_contrast 
├── scripts 
├── utils 
├── data
│   ├── r2v2_large_with_ids 
│   │   ├── train 
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/
│   │   ├── val
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/

Unsupervised Pretrain

./scripts/train_cycle.sh

Downstream task - ImageNet linear eval

Prepare ImageNet dataset according to pytorch ImageNet training code.

MODEL_DIR=output/cycle_res50_r2v2_ep200
IMAGENET_DATA=data/ILSVRC/Data/CLS-LOC
./scripts/eval_ImageNet.sh $MODEL_DIR $IMAGENET_DATA

Downstream task - OTB tracking

Transfer to OTB tracking evaluation is based on SiamFC-Pytorch. Please prepare environment and data according to SiamFC-Pytorch

git clone https://github.com/happywu/mmaction2-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd mmaction2_tracking
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Downstream task - UCF classification

Transfer to UCF action recognition evaluation is based on AVID-CMA, prepare data and env according to AVID-CMA.

git clone https://github.com/happywu/AVID-CMA-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd AVID-CMA-CycleContrast 
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Acknowledgements

The codebase is based on FAIR-MoCo. The OTB tracking evaluation is based on MMAction2, SiamFC-PyTorch and vince. The UCF classification evaluation follows AVID-CMA.

Thank you all for the great open source repositories!

You might also like...
[ICCV'21] Official implementation for the paper  Social NCE: Contrastive Learning of Socially-aware Motion Representations
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Supervised Contrastive Learning for Downstream Optimized Sequence Representations
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss  Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023