Supervised Contrastive Learning for Downstream Optimized Sequence Representations

Overview

PyPI license arXiv

SupCL-Seq 📖

Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, extends the supervised contrastive learning from computer vision to the optimization of sequence representations in NLP. By altering the dropout mask probability in standard Transformer architectures (e.g. BERT_base), for every representation (anchor), we generate augmented altered views. A supervised contrastive loss is then utilized to maximize the system’s capability of pulling together similar samples (e.g. anchors and their altered views) and pushing apart the samples belonging to the other classes. Despite its simplicity, SupCL-Seq leads to large gains in many sequence classification tasks on the GLUE benchmark compared to a standard BERT_base, including 6% absolute improvement on CoLA, 5.4% on MRPC, 4.7% on RTE and 2.6% on STS-B.

This package can be easily run on almost all of the transformer models in Huggingface 🤗 that contain an encoder including but not limited to:

  1. ALBERT
  2. BERT
  3. BigBird
  4. RoBerta
  5. ERNIE
  6. And many more models!

SupCL-Seq

Table of Contents

GLUE Benchmark BERT SupCL-SEQ

Installation

Usage

Run on GLUE

How to Cite

References

GLUE Benchmark BERT SupCL-SEQ

The table below reports the improvements over naive finetuning of BERT model on GLUE benchmark. We employed [CLS] token during training and expect that using the mean would further improve these results.

Glue

Installation

  1. First you need to install one of, or both, TensorFlow 2.0 and PyTorch. Please refer to TensorFlow installation page, PyTorch installation page and/or Flax installation page regarding the specific install command for your platform.

  2. Second step:

$ pip install SupCL-Seq

Usage

The package builds on the trainer from Huggingface 🤗 . Therefore, its use is exactly similar to trainer. The pipeline works as follows:

  1. First employ supervised contrastive learning to constratively optimize sentence embeddings using your annotated data.
from SupCL_Seq import SupCsTrainer

SupCL_trainer = SupCsTrainer.SupCsTrainer(
            w_drop_out=[0.0,0.05,0.2],      # Number of views and their associated mask drop-out probabilities [Optional]
            temperature= 0.05,              # Temeprature for the contrastive loss function [Optional]
            def_drop_out=0.1,               # Default drop out of the transformer, this is usually 0.1 [Optional]
            pooling_strategy='mean',        # Strategy used to extract embeddings can be from `mean` or `pooling` [Optional]
            model = model,                  # model
            args = CL_args,                 # Arguments from `TrainingArguments` [Optional]
            train_dataset=train_dataset,    # Train dataloader
            tokenizer=tokenizer,            # Tokenizer
            compute_metrics=compute_metrics # If you need a customized evaluation [Optional]
        )
  1. After contrastive training:

    2.1 Add a linear classification layer to your model

    2.2 Freeze the base layer

    2.3 Finetune the linear layer on your annotated data

For detailed implementation see glue.ipynb

Run on GLUE

In order to evaluate the method on GLUE benchmark please see the glue.ipynb

How to Cite

@misc{sedghamiz2021supclseq,
      title={SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations}, 
      author={Hooman Sedghamiz and Shivam Raval and Enrico Santus and Tuka Alhanai and Mohammad Ghassemi},
      year={2021},
      eprint={2109.07424},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

[1] Supervised Contrastive Learning

[2] SimCSE: Simple Contrastive Learning of Sentence Embeddings

Owner
Hooman Sedghamiz
Data Science Lead interested in ML/AI and algorithm development for healthcare challenges.
Hooman Sedghamiz
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023