Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Related tags

Deep Learninggnr
Overview

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis

report

Teaser image

Abstract: This work targets at using a general deep learning framework to synthesize free-viewpoint images of arbitrary human performers, only requiring a sparse number of camera views as inputs and skirting per-case fine-tuning. The large variation of geometry and appearance, caused by articulated body poses, shapes and clothing types, are the key bot tlenecks of this task. To overcome these challenges, we present a simple yet powerful framework, named Generalizable Neural Performer (GNR), that learns a generalizable and robust neural body representation over various geometry and appearance. Specifically, we compress the light fields for novel view human rendering as conditional implicit neural radiance fields with several designs from both geometry and appearance aspects. We first introduce an Implicit Geometric Body Embedding strategy to enhance the robustness based on both parametric 3D human body model prior and multi-view source images hints. On the top of this, we further propose a Screen-Space Occlusion-Aware Appearance Blending technique to preserve the high-quality appearance, through interpolating source view appearance to the radiance fields with a relax but approximate geometric guidance.

Wei Cheng, Su Xu, Jingtan Piao, Chen Qian, Wayne Wu, Kwan-Yee Lin, Hongsheng Li
[Demo Video] | [Project Page] | [Data] | [Paper]

Updates

  • [02/05/2022] GeneBody Train40 is released! Apply here! 💥 Test10 has made some adjustment on data format.
  • [29/04/2022] SMPLx fitting toolbox and benchmarks are released! 💥
  • [26/04/2022] Code is coming soon!
  • [26/04/2022] Part of data released!
  • [26/04/2022] Techincal report released.
  • [24/04/2022] The codebase and project page are created.

Upcoming Events

  • [08/05/2022] Code and pretrain model release.
  • [01/06/2022] Extended370 release.

Data Download

To download and use the GeneBody dataset set, please read the instructions in Dataset.md.

Annotations

GeneBody provides the per-view per-frame segmentation, using BackgroundMatting-V2, and register the fitted SMPLx using our enhanced multi-view smplify repo in here.

To use annotations of GeneBody, please check the document Annotation.md, we provide a reference data fetch module in genebody.

Benchmarks

We also provide benchmarks of start-of-the-art methods on GeneBody Dataset, methods and requirements are listed in Benchmarks.md.

To test the performance of our released pretrained models, or train by yourselves, run:

git clone --recurse-submodules https://github.com/generalizable-neural-performer/gnr.git

And cd benchmarks/, the released benchmarks are ready to go on Genebody and other datasets such as V-sense and ZJU-Mocap.

Case-specific Methods on Genebody

Model PSNR SSIM LPIPS ckpts
NV 19.86 0.774 0.267 ckpts
NHR 20.05 0.800 0.155 ckpts
NT 21.68 0.881 0.152 ckpts
NB 20.73 0.878 0.231 ckpts
A-Nerf 15.57 0.508 0.242 ckpts

(see detail why A-Nerf's performance is counterproductive in issue)

Generalizable Methods on Genebody

Model PSNR SSIM LPIPS ckpts
PixelNeRF 24.15 0.903 0.122
IBRNet 23.61 0.836 0.177 ckpts

Citation

@article{cheng2022generalizable,
    title={Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis},
    author={Cheng, Wei and Xu, Su and Piao, Jingtan and Qian, Chen and Wu, Wayne and Lin, Kwan-Yee and Li, Hongsheng},
    journal={arXiv preprint arXiv:2204.11798},
    year={2022}
}
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022