Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Related tags

Deep Learninggnr
Overview

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis

report

Teaser image

Abstract: This work targets at using a general deep learning framework to synthesize free-viewpoint images of arbitrary human performers, only requiring a sparse number of camera views as inputs and skirting per-case fine-tuning. The large variation of geometry and appearance, caused by articulated body poses, shapes and clothing types, are the key bot tlenecks of this task. To overcome these challenges, we present a simple yet powerful framework, named Generalizable Neural Performer (GNR), that learns a generalizable and robust neural body representation over various geometry and appearance. Specifically, we compress the light fields for novel view human rendering as conditional implicit neural radiance fields with several designs from both geometry and appearance aspects. We first introduce an Implicit Geometric Body Embedding strategy to enhance the robustness based on both parametric 3D human body model prior and multi-view source images hints. On the top of this, we further propose a Screen-Space Occlusion-Aware Appearance Blending technique to preserve the high-quality appearance, through interpolating source view appearance to the radiance fields with a relax but approximate geometric guidance.

Wei Cheng, Su Xu, Jingtan Piao, Chen Qian, Wayne Wu, Kwan-Yee Lin, Hongsheng Li
[Demo Video] | [Project Page] | [Data] | [Paper]

Updates

  • [02/05/2022] GeneBody Train40 is released! Apply here! πŸ’₯ Test10 has made some adjustment on data format.
  • [29/04/2022] SMPLx fitting toolbox and benchmarks are released! πŸ’₯
  • [26/04/2022] Code is coming soon!
  • [26/04/2022] Part of data released!
  • [26/04/2022] Techincal report released.
  • [24/04/2022] The codebase and project page are created.

Upcoming Events

  • [08/05/2022] Code and pretrain model release.
  • [01/06/2022] Extended370 release.

Data Download

To download and use the GeneBody dataset set, please read the instructions in Dataset.md.

Annotations

GeneBody provides the per-view per-frame segmentation, using BackgroundMatting-V2, and register the fitted SMPLx using our enhanced multi-view smplify repo in here.

To use annotations of GeneBody, please check the document Annotation.md, we provide a reference data fetch module in genebody.

Benchmarks

We also provide benchmarks of start-of-the-art methods on GeneBody Dataset, methods and requirements are listed in Benchmarks.md.

To test the performance of our released pretrained models, or train by yourselves, run:

git clone --recurse-submodules https://github.com/generalizable-neural-performer/gnr.git

And cd benchmarks/, the released benchmarks are ready to go on Genebody and other datasets such as V-sense and ZJU-Mocap.

Case-specific Methods on Genebody

Model PSNR SSIM LPIPS ckpts
NV 19.86 0.774 0.267 ckpts
NHR 20.05 0.800 0.155 ckpts
NT 21.68 0.881 0.152 ckpts
NB 20.73 0.878 0.231 ckpts
A-Nerf 15.57 0.508 0.242 ckpts

(see detail why A-Nerf's performance is counterproductive in issue)

Generalizable Methods on Genebody

Model PSNR SSIM LPIPS ckpts
PixelNeRF 24.15 0.903 0.122
IBRNet 23.61 0.836 0.177 ckpts

Citation

@article{cheng2022generalizable,
    title={Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis},
    author={Cheng, Wei and Xu, Su and Piao, Jingtan and Qian, Chen and Wu, Wayne and Lin, Kwan-Yee and Li, Hongsheng},
    journal={arXiv preprint arXiv:2204.11798},
    year={2022}
}
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
πŸ₯A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

VΓ­tor Albiero 519 Dec 29, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022