MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Overview

Introduction

Tweet

MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identify similar or dissimilar subsequences compared to your query. At its core, MASS computes Euclidean distances under z-normalization in an efficient manner and is domain agnostic in nature. It is the fundamental algorithm that the matrix profile algorithm is built on top of.

mass-ts is a python 2 and 3 compatible library.

Free software: Apache Software License 2.0

Features

Original Author's Algorithms

  • MASS - the first implementation of MASS
  • MASS2 - the second implementation of MASS that is significantly faster. Typically this is the one you will use.
  • MASS3 - a piecewise version of MASS2 that can be tuned to your hardware. Generally this is used to search very large time series.
  • MASS_weighted - TODO

Library Specific Algorithms

  • MASS2_batch - a batch version of MASS2 that reduces overall memory usage, provides parallelization and enables you to find top K number of matches within the time series. The goal of using this implementation is for very large time series similarity search.
  • top_k_motifs - find the top K number of similar subsequences to your given query. It returns the starting index of the subsequence.
  • top_k_discords - find the top K number of dissimilar subsequences to your given query. It returns the starting index of the subsequence.
  • MASS2_gpu - a GPU implementation of MASS2 leveraging the Python library CuPy.

Installation

pip install mass-ts

GPU Support

Please follow the installation guide for CuPy. It covers what drivers and environmental dependencies are required. Once you are finished there, you can install GPU support for the algorithms.

pip install mass-ts[gpu]

Example Usage

A dedicated repository for practical examples can be found at the mass-ts-examples repository.

import numpy as np
import mass_ts as mts

ts = np.loadtxt('ts.txt')
query = np.loadtxt('query.txt')

# mass
distances = mts.mass(ts, query)

# mass2
distances = mts.mass2(ts, query)

# mass3
distances = mts.mass3(ts, query, 256)

# mass2_gpu
distances = mts.mass2_gpu(ts, query)

# mass2_batch
# start a multi-threaded batch job with all cpu cores and give me the top 5 matches.
# note that batch_size partitions your time series into a subsequence similarity search.
# even for large time series in single threaded mode, this is much more memory efficient than
# MASS2 on its own.
batch_size = 10000
top_matches = 5
n_jobs = -1
indices, distances = mts.mass2_batch(ts, query, batch_size, 
    top_matches=top_matches, n_jobs=n_jobs)

# find minimum distance
min_idx = np.argmin(distances)

# find top 4 motif starting indices
k = 4
exclusion_zone = 25
top_motifs = mts.top_k_motifs(distances, k, exclusion_zone)

# find top 4 discord starting indices
k = 4
exclusion_zone = 25
top_discords = mts.top_k_discords(distances, k, exclusion_zone)

Citations

Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance, URL: http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Owner
Matrix Profile Foundation
Enabling community members to easily interact with the Matrix Profile algorithms through education, support and software.
Matrix Profile Foundation
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022