[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

Overview

CrowdNav with Social-NCE

This is an official implementation for the paper

Social NCE: Contrastive Learning of Socially-aware Motion Representations
by Yuejiang Liu, Qi Yan, Alexandre Alahi at EPFL
to appear at ICCV 2021

TL;DR: Contrastive Representation Learning + Negative Data Augmentations 🡲 Robust Neural Motion Models

Please check out our code for experiments on different models as follows:
Social NCE + CrowdNav | Social NCE + Trajectron | Social NCE + STGCNN

Preparation

Setup environments follwoing the SETUP.md

Training & Evaluation

  • Behavioral Cloning (Vanilla)
    python imitate.py --contrast_weight=0.0 --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-baseline-data-0.50/policy_net.pth
    
  • Social-NCE + Conventional Negative Sampling (Local)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='local' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-local-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0-range-2.00/policy_net.pth
    
  • Social-NCE + Safety-driven Negative Sampling (Ours)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='event' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-event-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0/policy_net.pth
    
  • Method Comparison
    bash script/run_vanilla.sh && bash script/run_local.sh && bash script/run_snce.sh
    python utils/compare.py
    

Basic Results

Results of behavioral cloning with different methods.

Averaged results from the 150th to 200th epochs.

collision reward
Vanilla 12.7% ± 3.8% 0.274 ± 0.019
Local 19.3% ± 4.2% 0.240 ± 0.021
Ours 2.0% ± 0.6% 0.331 ± 0.003

Citation

If you find this code useful for your research, please cite our papers:

@article{liu2020snce,
  title   = {Social NCE: Contrastive Learning of Socially-aware Motion Representations},
  author  = {Yuejiang Liu and Qi Yan and Alexandre Alahi},
  journal = {arXiv preprint arXiv:2012.11717},
  year    = {2020}
}
@inproceedings{chen2019crowdnav,
    title={Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning},
    author={Changan Chen and Yuejiang Liu and Sven Kreiss and Alexandre Alahi},
    year={2019},
    booktitle={ICRA}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022