Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Overview

Adversarial Reciprocal Points Learning for Open Set Recognition

Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition".

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.4+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For Tiny-ImageNet, please download the following datasets to ./data/tiny_imagenet.

2. Training & Evaluation

Open Set Recognition

To train open set recognition models in paper, run this command:

python osr.py --dataset <DATASET> --loss <LOSS>

Option --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/svhn/cifar10/cifar100/tiny_imagenet. To run ARPL+CS, add --cs after this command.

Out-of-Distribution Detection

To train out-of-distribution models in paper, run this command:

python ood.py --dataset <DATASET> --out-dataset <DATASET> --model <NETWORK> --loss <LOSS>

Option --out-dataset denotes the out-of-distribution dataset for evaluation. --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/cifar10. --out-dataset is one of kmnist/svhn/cifar100. To run ARPL+CS, add --cs after this command.

Evaluation

To evaluate the trained model for Open Set Classification Rate (OSCR) and Out-of-Distribution (OOD) detection setting, add --eval after the training command.

3. Results

We visualize the deep feature of Softmax/GCPL/ARPL/ARPL+CS as below.

Colored triangles represent the learned reciprocal points of different known classes.

4. PKU-AIR300

A new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). It contains 320,000 annotated colour images from 300 different classes in total. Each category contains 100 images at least, and a maximum of 10,000 images, which leads to the long tail distribution.

Citation

  • If you find our work or the code useful, please consider cite our paper using:
@inproceedings{chen2021adversarial,
    title={Adversarial Reciprocal Points Learning for Open Set Recognition},
    author={Chen, Guangyao and Peng, Peixi and Wang, Xiangqian and Tian, Yonghong},
    journal={arXiv preprint arXiv:2103.00953},
    year={2021}
}
  • All publications using Air-300 Dataset should cite the paper below:
@InProceedings{chen_2020_ECCV,
    author = {Chen, Guangyao and Qiao, Limeng and Shi, Yemin and Peng, Peixi and Li, Jia and Huang, Tiejun and Pu, Shiliang and Tian, Yonghong},
    title = {Learning Open Set Network with Discriminative Reciprocal Points},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022