Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Overview

Extrapolating from a Single Image to a Thousand Classes using Distillation

by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution)

Our-method

Extrapolating from one image. Strongly augmented patches from a single image are used to train a student (S) to distinguish semantic classes, such as those in ImageNet. The student neural network is initialized randomly and learns from a pretrained teacher (T) via KL-divergence. Although almost none of target categories are present in the image, we find student performances of > 59% for classifying ImageNet's 1000 classes. In this paper, we develop this single datum learning framework and investigate it across datasets and domains.

Key contributions

  • A minimal framework for training neural networks with a single datum from scratch using distillation.
  • Extensive ablations of the proposed method, such as the dependency on the source image, the choice of augmentations and network architectures.
  • Large scale empirical evidence of neural networks' ability to extrapolate on > 13 image, video and audio datasets.
  • Qualitative insights on what and how neural networks trained with a single image learn.

Neuron visualizations

Neurons

We compare activation-maximization-based visualizations using the Lucent library. Even though the model has never seen an image of a panda, the model trained with a teacher and only single-image inputs has a good idea of how a panda looks like.

Running the experiments

Installation

In each folder cifar\in1k\video you will find a requirements.txt file. Install packages as follows:

pip3 install -r requirements.txt

1. Prepare Dataset:

To generate single image data, we refer to the data_generation folder

2. Run Experiments:

There is a main "distill.py" file for each experiment type: small-scale and large-scale images and video. Note: 2a uses tensorflow and 2b, 2c use pytorch.

2a. Run distillation experiments for CIFAR-10/100

e.g. with Animal single-image dataset as follows:

# in cifar folder:
python3 distill.py --dataset=cifar10 --image=/path/to/single_image_dataset/ \
                   --student=wrn_16_4 --teacher=wrn_40_4 

Note that we provide a pretrained teacher model for reproducibility.

2b. Run distillation experiments for ImageNet with single-image dataset as follows:

# in in1k folder:
python3 distill.py --dataset=in1k --testdir /ILSVRC12/val/ \
                   --traindir=/path/to/dataset/ --student_arch=resnet50 --teacher_arch=resnet18 

Note that teacher models are automatically downloaded from torchvision or timm.

2c. Run distillation experiments for Kinetics with single-image-created video dataset as follows:

# in video folder:
python3 distill.py --dataset=k400 --traindir=/dataset/with/vids --test_data_path /path/to/k400/val 

Note that teacher models are automatically downloaded from torchvideo when you distill a K400 model.

Pretrained models

Large-scale (224x224-sized) image ResNet-50 models trained for 200ep:

Dataset Teacher Student Performance Checkpoint
ImageNet-12 R18 R50 59.1% R50 weights
ImageNet-12 R50 R50 53.5% R50 weights
Places365 R18 R50 54.7% R50 weights
Flowers101 R18 R50 58.1% R50 weights
Pets37 R18 R50 83.7% R50 weights
IN100 R18 R50 74.1% R50 weights
STL-10 R18 R50 93.0% R50 weights

Video x3d_s_e (expanded) models (160x160 crop, 4frames) trained for 400ep:

Dataset Teacher Student Performance Checkpoint
K400 x3d_xs x3d_xs_e 53.57% weights
UCF101 x3d_xs x3d_xs_e 77.32% weights

Citation

@inproceedings{asano2021extrapolating,
  title={Extrapolating from a Single Image to a Thousand Classes using Distillation},
  author={Asano, Yuki M. and Saeed, Aaqib},
  journal={arXiv preprint arXiv:2112.00725},
  year={2021}
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
5 Jan 05, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022