Final project for Intro to CS class.

Overview

Financial Analysis Web App

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

1. Project Description

This project is a technical analysis web app made using the Streamlit framework. It allows for a user to perform various analysis methods given a ticker and input parameters. The following indicators are supported: Moving Average, Exponential Moving Average, and Moving Average Convergence Divergence. Additionally, a function to plot Moving Average crossovers of user provided windows is also provided (extra credit?). The app allows for charts with the range of current date and up to 999 days in the past.

2. Project Selection

I chose this project as I enjoy analyzing stock data and wanted to learn more about making a web app with visualizations. Through making this app, I learned the basics of web app development and how to use various frameworks. Additionally, I leveraged Python libraries and APIs to collect stock data. I learned how to develop a data collection and analysis pipeline using a stock data API. Finally, I learned how to apply Classes to a real world application through this project.

3. Future Considerations

If I had an opportunity to redo this project, I would make the visualizations more robust by allowing for user manipulation. Further, in order to improve performance and memory, I would implement a caching feature to prevent unnecessary API calls. These changes would be made in order to improve the quality of the data visualizations and provide a long term solution for this web app given the limitations of the free API. Further, I would use a more robust API as the current one is limited in number of calls and does not adjust historic data for stock split prices.

4. How to Run the Web App

The web app is currently hosted on the Streamlit servers at the following URL:

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

No additional setup or changes should be needed in order for the app to run.

How to Use the Web App

To start, enter a ticker in the text box in the sidebar (if the sidebar is not visible, press the arrow in the top left corner). SPY is set as the default value if no input is provided. Next, select the type of Technical Analysis you would like to do. Depending on the selection, a set of parameters will be provided below. Next, provide the delta value, which is the number of days from the current day to collect data on. The application will pull the daily adjusted closing values of the provided ticker. Next, adjust the sliders for the given Technical Analysis selection. There are default values for some TAs. In order to revert them, select a different dropdown item and select the original again.

Please wait ~1 second after hitting 'Run' for the app the update.

API Limitations: due to the limitations of the (free) API, historic stock price data is NOT retroactively updated for stock splits.

NOTE: please enter logical selections, if a specific chart is not possible, the system will not graph the line. Hit 'Run' to create a new graph after updating the inputs.

If an incorrect ticker is provided, the system will display an error message. In order to clear this, provide valid inputs in the sidebar and hit 'Run' again.

5. Challenges

The main challenge of this project was finding and using an appropriate framework. Having tried Flask and Django before settling on Streamlit, the process of creating a web app can be very tedious. Further, creating and setting up the proper logic was difficult as I had to account for various user inputs and selections, without having the entire page crash. One of the biggest issues I faced was a proper implementation of updating the sidebar fields given the user selection. I overcame these issues by implementing a Streamlit form in order to prevent user inputs from conflicting with each other.

6. Cited Sources

The official documentations of the Streamlit, Alpaca, and numpy APIs were extensively used. The Streamlit documentation greatly helped in the formulation of the web app elements and implementation of the logic. The Alpaca Markets API and documentation was used in order to pull market data. Finally, the third resource was used to assist in the creation of moving average plots from stock data.

https://docs.streamlit.io/

https://alpaca.markets/docs/

https://www.datacamp.com/community/tutorials/moving-averages-in-pandas

Description of Files

webApp.py

Main web app driver file. Contains the page objects and form logic.

tradingMethods.py

Class to perform the technical analysis functions. Takes in ticker, deltas, and related features.

config.py

Holds references to API keys.

requirements.txt

Necessary Python libraries.

Owner
Mayur Khanna
Biomedical Informatics M.S. Candidate at University of Chicago | Python | JavaScript | Bioinformatics
Mayur Khanna
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022