Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Overview

Sparsity Probe: Analysis tool for Deep Learning Models

GitHub license made-with-python made-with-pytorch

This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning Models by I. Ben-Shaul and S. Dekel (2021).

Folded Ball Example

Downloading the Repo

git clone https://github.com/idobenshaul10/SparsityProbe.git
pip install -r requirements.txt

Requirements

torch==1.7.0
umap_learn==0.4.6
matplotlib==3.3.2
tqdm==4.49.0
seaborn==0.11.0
torchvision==0.8.1
numpy==1.19.2
scikit_learn==0.24.2
umap==0.1.1

Usage

The first step of using this Repo should be to look at this example: CIFAR10 Example. In this example, we demonstrate running the Sparsity-Probe on a trained Resnet18 on the CIFAR10 dataset, at selected layers.

Creating a new enviorment:

Create a new environment in the environments directory, inheriting from BaseEnviorment. This enviorment should include the train and test datasets(including the matching transforms), the model layers we want to test the alpha-scores on(see cifar10_env example), and the trained model.

Training a model:

It is possible to train a basic model with the train.py script, which uses an environment to load the model and the datasets. Example Usage: python train/train_mnist.py --output_path "results" --batch_size 32 --epochs 100

Running the Sparsity Probe

Done using the DL_smoothness.py script. Arguments:
trees - Number of trees in the forest.
depth - Maximum depth of each tree.
batch_size - batch used in the forward pass(when computing the layer outputs)
env_name - enviorment which is loaded to measure alpha-scores on
epsilon_1 - the epsilon_low used for the numerical approximation. By default, epsilon_high is inited as 4*epsilon_low
only_umap - only create umaps of the intermediate layers(without computing alpha-scores)
use_clustering - run KMeans on intermediate layers
calc_test - calculate test accuracy(More metrics coming soon)
output_folder - location where all outputs are saved
feature_dimension - to reduce computation costs, we compute the alpha-scores on the features after a dimensionality reduction technique has been applied. As of now, if the dim(layer_outputs)>feature_dimension, the TruncatedSVD is used to reduce dim(layer_outputs) to feature_dimension. Default feature_dimension is 2500.

Plotting Results

Result plots can be created using this script.

UMAP example

Acknowledgements

Our pretrained CIFAR10 Resnet18 network used in the example is taken from This Repo.

License

This repository is MIT licensed, as found in the LICENSE file.

Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022