Make Watson Assistant send messages to your Discord Server

Overview

Make Watson Assistant send messages to your Discord Server

Prerequisites

  1. Sign up for an IBM Cloud account.
  2. Fill in the required information and press the „Create Account“ button.
  3. After you submit your registration, you will receive an e-mail from the IBM Cloud team with details about your account. In this e-mail, you will need to click the link provided to confirm your registration.
  4. Now you should be able to login to your new IBM Cloud account ;-)
  5. Create a Discord account, as well your own Discord server (both are free of charge).

Activate Webhooks in Discord

We want to enable webhooks in our Discord server's settings, which will be used by Watson Assistant to send messages.

  1. Go to your server's settings
  2. Navigate to Integrations
  3. Create a new Webhook, and copy its URL

Note: Discord does not require any additional Authentification, which means that anyone who has the URL can use the Webhook. Ensure that only you, and people you trust have access to it.

Set up your cloud function

Create cloud function

We want to set up a cloud function, which Watson Assistant will be able to access. To do that, you need to go to your IBM Cloud Dashboard, and select Functions.

Alternatively you can click here to access the IBM Cloud functions.

Now you can create a new Action. Give it a sensible name, select python as your runtime, and click create.

Create Cloud Function Action

Paste in the code that can be found here, change the value of discordurl to your URL, and save your changes.

Test cloud function

If you want to test it, you can click on Invoke with parameter, paste in the input below, click apply, and press Invoke.

{
    "content" : "this is a test message sent by your cloud function"
}

If the message was sent successfully, the result should look like this.

Enable as Web Action

Now we need to create an endpoint, which will be used by Watson Assistant to invoce your function.

On the left side, click Endpoints and check the box called Enable as Web Action. Press save, and copy the URL.

Set up your Assistant

Set up Watson Assistant

Go back to your Dashboard, and type Watson Assistant into the search bar. If you already have a Watson Assistant service you can use it, otherwise you can create a free lite version either by clicking Watson Assistant under the Catalog Results Section or following this link.

Create your own Skill

Afterwards launch your Watson Assistant Service, and look for Skills on the left.

If you can't find it, click on the profile icon in the upper right corner, and click Switch to classic experience.

Create a new skill, select Dialog skill and click next. Select Upload skill and provide the skill-Connect-to-Discord.json file.

Enable Webhooks

Before you can test your assistant, you need to provide the cloud funtion's URL.

Click on Options->Webhooks, paste in the URL, and ADD A .json AT THE END.

We could use Discord's webhook link direcly, without adding a .json, and it would send the message as well. However, Discord doesn't return anything (that Watson Assistant can understand), which would prevent us from informing the user of our assistant, that the message was sent correctly.

Test your assistant

Now you can click on the Try it button and test whether the assistant is working correctly.


This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021