Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Overview

Meta-Solver for Neural Ordinary Differential Equations

Towards robust neural ODEs using parametrized solvers.

Main idea

Each Runge-Kutta (RK) solver with s stages and of the p-th order is defined by a table of coefficients (Butcher tableau). For s=p=2, s=p=3 and s=p=4 all coefficient in the table can be parametrized with no more than two variables [1].

Usually, during neural ODE training RK solver with fixed Butcher tableau is used, and only the right-hand side (RHS) function is trained. We propose to use the whole parametric family of RK solvers to improve robustness of neural ODEs.

Requirements

  • pytorch==1.7
  • apex==0.1 (for training)

Examples

For CIFAR-10 and MNIST demo, please, check examples folder.

Meta Solver Regimes

In the notebook examples/cifar10/Evaluate model.ipynb we show how to perform the forward pass through the Neural ODE using different types of Meta Solver regimes, namely

  • Standalone
  • Solver switching/smoothing
  • Solver ensembling
  • Model ensembling

In more details, usage of different regimes means

  • Standalone

    • Use one solver during inference.
    • This regime is applied in the training and testing stages.
  • Solver switching / smoothing

    • For each batch one solver is chosen from a group of solvers with finite (in switching regime) or infinite (in smoothing regime) number of candidates.
    • This regime is applied in the training stage
  • Solver ensembling

    • Use several solvers durung inference.
    • Outputs of ODE Block (obtained with different solvers) are averaged before propagating through the next layer.
    • This regime is applied in the training and testing stages.
  • Model ensembling

    • Use several solvers durung inference.
    • Model probabilites obtained via propagation with different solvers are averaged to get the final result.
    • This regime is applied in the training and testing stages.

Selected results

Different solver parameterizations yield different robustness

We have trained a neural ODE model several times, using different u values in parametrization of the 2-nd order Runge-Kutta solver. The image below depicts robust accuracies for the MNIST classification task. We use PGD attack (eps=0.3, lr=2/255 and iters=7). The mean values of robust accuracy (bold lines) and +- standard error mean (shaded region) computed across 9 random seeds are shown in this image.

Solver smoothing improves robustness

We compare results of neural ODE adversarial training on CIFAR-10 dataset with and without solver smoothing (using normal distribution with mean = 0 and sigma=0.0125). We choose 8-steps RK2 solver with u=0.5 for this experiment.

  • We perform training using FGSM random technique described in https://arxiv.org/abs/2001.03994 (with eps=8/255, alpha=10/255).
  • We use cyclic learning rate schedule with one cycle (36 epochs, max_lr=0.1, base_lr=1e-7).
  • We measure robust accuracy of resulting models after FGSM (eps=8/255) and PGD (eps=8/255, lr=2/255, iters=7) attacks.
  • We use premetanode10 architecture from sopa/src/models/odenet_cifar10/layers.py that has the following form Conv -> PreResNet block -> ODE block -> PreResNet block -> ODE block -> GeLU -> Average Pooling -> Fully Connected
  • We compute mean and standard error across 3 random seeds.

References

[1] Wanner, G., & Hairer, E. (1993). Solving ordinary differential equations I. Springer Berlin Heidelberg

Owner
Julia Gusak
Julia Gusak
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022