PyTorch Lightning implementation of Automatic Speech Recognition

Overview

lasr

Lightening Automatic Speech Recognition

An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models.


Introduction

PyTorch Lightning is the lightweight PyTorch wrapper for high-performance AI research. PyTorch is extremely easy to use to build complex AI models. But once the research gets complicated and things like multi-GPU training, 16-bit precision and TPU training get mixed in, users are likely to introduce bugs. PyTorch Lightning solves exactly this problem. Lightning structures your PyTorch code so it can abstract the details of training. This makes AI research scalable and fast to iterate on.

This project is an example that implements the asr project with PyTorch Lightning. In this project, I trained a model consisting of a conformer encoder + LSTM decoder with Joint CTC-Attention. The lasr means lighthning automatic speech recognition. I hope this could be a guideline for those who research speech recognition.

Installation

This project recommends Python 3.7 or higher.
I recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • Numpy: pip install numpy (Refer here for problem installing Numpy).
  • Pytorch: Refer to PyTorch website to install the version w.r.t. your environment.
  • librosa: conda install -c conda-forge librosa (Refer here for problem installing librosa)
  • torchaudio: pip install torchaudio==0.6.0 (Refer here for problem installing torchaudio)
  • sentencepiece: pip install sentencepiece (Refer here for problem installing sentencepiece)
  • pytorch-lightning: pip install pytorch-lightning (Refer here for problem installing pytorch-lightning)
  • hydra: pip install hydra-core --upgrade (Refer here for problem installing hydra)

Install from source

Currently we only support installation from source code using setuptools. Checkout the source code and run the
following commands:

pip install -e .

Install Apex (for 16-bit training)

For faster training install NVIDIA's apex library:

$ git clone https://github.com/NVIDIA/apex
$ cd apex

# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch

# see available modules
module avail

# load correct CUDA before install
module load cuda-10.0
# ------------------------

# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0

$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Get Started

I use Hydra to control all the training configurations. If you are not familiar with Hydra we recommend visiting the Hydra website. Generally, Hydra is an open-source framework that simplifies the development of research applications by providing the ability to create a hierarchical configuration dynamically.

Training Speech Recognizer

You can simply train with LibriSpeech dataset like below:

$ python ./bin/main.py --dataset_path $DATASET_PATH --dataset_download True

Check configuraions at [link]

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Author

You might also like...
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

A simple, unofficial implementation of MAE using pytorch-lightning
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

 Tensorflow Implementation for
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

Comments
  • incorrect spm params

    incorrect spm params

    python prepare_libri.py --dataset_path ../../data/lasr/libri/LibriSpeech --vocab_size 5000
    sentencepiece_trainer.cc(177) LOG(INFO) Running command: --input=spm_input.txt --model_prefix=tokenizer --vocab_size=5000 --model_type=unigram --pad_id=0 --bos_id=1 --eos_id=2
    sentencepiece_trainer.cc(77) LOG(INFO) Starts training with :
    trainer_spec {
      input: spm_input.txt
      input_format:
      model_prefix: tokenizer
      model_type: UNIGRAM
      vocab_size: 5000
      self_test_sample_size: 0
      character_coverage: 0.9995
      input_sentence_size: 0
      shuffle_input_sentence: 1
      seed_sentencepiece_size: 1000000
      shrinking_factor: 0.75
      max_sentence_length: 4192
      num_threads: 16
      num_sub_iterations: 2
      max_sentencepiece_length: 16
      split_by_unicode_script: 1
      split_by_number: 1
      split_by_whitespace: 1
      split_digits: 0
      treat_whitespace_as_suffix: 0
      required_chars:
      byte_fallback: 0
      vocabulary_output_piece_score: 1
      train_extremely_large_corpus: 0
      hard_vocab_limit: 1
      use_all_vocab: 0
      unk_id: 0
      bos_id: 1
      eos_id: 2
      pad_id: 0
      unk_piece: <unk>
      bos_piece: <s>
      eos_piece: </s>
      pad_piece: <pad>
      unk_surface:  ⁇
    }
    normalizer_spec {
      name: nmt_nfkc
      add_dummy_prefix: 1
      remove_extra_whitespaces: 1
      escape_whitespaces: 1
      normalization_rule_tsv:
    }
    denormalizer_spec {}
    Traceback (most recent call last):
      File "prepare_libri.py", line 65, in <module>
        main()
      File "prepare_libri.py", line 58, in main
        prepare_tokenizer(transcripts_collection[0], opt.vocab_size)
      File "lasr/dataset/preprocess.py", line 71, in prepare_tokenizer
        spm.SentencePieceTrainer.Train(cmd)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 407, in Train
        return SentencePieceTrainer._TrainFromString(arg)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 385, in _TrainFromString
        return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
    RuntimeError: Internal: /home/conda/feedstock_root/build_artifacts/sentencepiece_1612846348604/work/src/trainer_interface.cc(666) [insert_id(trainer_spec_.pad_id(), trainer_spec_.pad_piece())]
    
    
    opened by szalata 3
Releases(v0.1)
Owner
Soohwan Kim
Toward human-like AI
Soohwan Kim
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022