RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

Overview

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

Implementation for "3D Human Pose, Shape and Texture from Low-Resolution Images and Videos", TPAMI 2021

Conference version: "3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning", ECCV 2020

Project page

What is new?

  • RSC-Net:

    • Resolution-aware structure
    • Self-supervised learning
    • Contrastive learning
  • Temporal post-processing for video input

  • TexGlo: Global module for 3D texture reconstruction

Brief introduction

Alt Text

Video

Video

Code

Packages

Make sure you have gcc==5.x.x for installing the packages. Then run:

bash install_environment.sh

If you are running the code without a screen, please install OSMesa and the corresponding PyOpenGL. Then uncomment the 2nd line of "utils/renderer.py".

Data preparation

  • Download meta data, and unzip it in "./data".

  • Download datasets, and unzip it in "./datasets_pkl".

Note that all paths are set in "config.py".

Demo

python demo.py --checkpoint=./pretrained/RSC-Net.pt --img_path=./examples/im1.png
  • Note: if you have trouble in using Pyrender, please try "demo_nr.py":
python demo_nr.py --checkpoint=./pretrained/RSC-Net.pt --img_path=./examples/im1.png

If your neural-renderer has errors, please re-install the package from the source.

Evaluation

python eval.py --checkpoint=./pretrained/RSC-Net.pt 

Training

python train.py --name=RSC-Net 

   

If you find this work helpful in your research, please cite our paper:

@article{xu20213d,
title={3D Human Pose, Shape and Texture from Low-Resolution Images and Videos},
author={Xu, Xiangyu and Chen, Hao and Moreno-Noguer, Francesc and Jeni, Laszlo A and De la Torre, Fernando},
journal={TPAMI},
year={2021},
}

@inproceedings{xu20203d,
title={3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning},
author={Xu, Xiangyu and Chen, Hao and Moreno-Noguer, Francesc and Jeni, Laszlo A and De la Torre, Fernando},
booktitle={ECCV},
year={2020},
}
Owner
XiangyuXu
XiangyuXu
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022