This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Overview

Swin Transformer for Semantic Segmentation of satellite images

This repo contains the supported code and configuration files to reproduce semantic segmentation results of Swin Transformer. It is based on mmsegmentaion. In addition, we provide pre-trained models for the semantic segmentation of satellite images into basic classes (vegetation, buildings, roads). The full description of this work is available on arXiv.

Application on the Ampli ANR project

Goal

This repo was used as part of the Ampli ANR projet.

The goal was to do semantic segmentation on satellite photos to precisely identify the species and the density of the trees present in the pictures. However, due to the difficulty of recognizing the exact species of trees in the satellite photos, we decided to reduce the number of classes.

Dataset sources

To train and test the model, we used data provided by IGN which concerns French departments (Hautes-Alpes in our case). The following datasets have been used to extract the different layers:

  • BD Ortho for the satellite images
  • BD Foret v2 for vegetation data
  • BD Topo for buildings and roads

Important: note that the data precision is 50cm per pixel.

Initially, lots of classes were present in the dataset. We reduced the number of classes by merging them and finally retained the following ones:

  • Dense forest
  • Sparse forest
  • Moor
  • Herbaceous formation
  • Building
  • Road

The purpose of the two last classes is twofold. We first wanted to avoid trapping the training into false segmentation, because buildings and roads were visually present in the satellite images and were initially assigned a vegetation class. Second, the segmentation is more precise and gives more identification of the different image elements.

Dataset preparation

Our training and test datasets are composed of tiles prepared from IGN open data. Each tile has a 1000x1000 resolution representing a 500m x 500m footprint (the resolution is 50cm per pixel). We mainly used data from the Hautes-Alpes department, and we took spatially spaced data to have as much diversity as possible and to limit the area without information (unfortunately, some places lack information).

The file structure of the dataset is as follows:

├── data
│   ├── ign
│   │   ├── annotations
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation
│   │   ├── images
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation

The dataset is available on download here.

Information on the training

During the training, a ImageNet-22K pretrained model was used (available here) and we added weights on each class because the dataset was not balanced in classes distribution. The weights we have used are:

  • Dense forest => 0.5
  • Sparse forest => 1.31237
  • Moor => 1.38874
  • Herbaceous formation => 1.39761
  • Building => 1.5
  • Road => 1.47807

Main results

Backbone Method Crop Size Lr Schd mIoU config model
Swin-L UPerNet 384x384 60K 54.22 config model

Here are some comparison between the original segmentation and the segmentation that has been obtained after the training (Hautes-Alpes dataset):

Original segmentation Segmentation after training

We have also tested the model on satellite photos from another French department to see if the trained model generalizes to other locations. We chose Cantal and here are a few samples of the obtained results:

Original segmentation Segmentation after training

These latest results show that the model is capable of producing a segmentation even if the photos are located in another department and even if there are a lot of pixels without information (in black), which is encouraging.

Limitations

As illustrated in the previous images that the results are not perfect. This is caused by the inherent limits of the data used during the training phase. The two main limitations are:

  • The satellite photos and the original segmentation were not made at the same time, so the segmentation is not always accurate. For example, we can see it in the following images: a zone is segmented as "dense forest" even if there are not many trees (that is why the segmentation after training, on the right, classed it as "sparse forest"):
Original segmentation Segmentation after training
  • Sometimes there are zones without information (represented in black) in the dataset. Fortunately, we can ignore them during the training phase, but we also lose some information, which is a problem: we thus removed the tiles that had more than 50% of unidentified pixels to try to improve the training.

Usage

Installation

Please refer to get_started.md for installation and dataset preparation.

Notes: During the installation, it is important to:

  • Install MMSegmentation in dev mode:
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -e .
  • Copy the mmcv_custom and mmseg folders into the mmsegmentation folder

Inference

The pre-trained model (i.e. checkpoint file) for satellite image segmentation is available for download here.

# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU

# multi-gpu, multi-scale testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU

Example on the Ampli ANR project:

# Evaluate checkpoint on a single GPU
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --eval mIoU

# Display segmentation results
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --show

Training

To train with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

Example on the Ampli ANR project with the ImageNet-22K pretrained model (available here) :

python tools/train.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py --options model.pretrained="./model/swin_large_patch4_window12_384_22k.pth"

Notes:

  • use_checkpoint is used to save GPU memory. Please refer to this page for more details.
  • The default learning rate and training schedule is for 8 GPUs and 2 imgs/gpu.

Citing Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Citing this work

See the complete description of this work in the dedicated arXiv paper. If you use this work, please cite it:

@misc{guerin2021satellite,
      title={Satellite Image Semantic Segmentation}, 
      author={Eric Guérin and Killian Oechslin and Christian Wolf and Benoît Martinez},
      year={2021},
      eprint={2110.05812},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Self-Supervised Learning: See MoBY with Swin Transformer.

Video Recognition, See Video Swin Transformer.

Owner
INSA Lyon - IT Engineering
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022