Ranger deep learning optimizer rewrite to use newest components

Related tags

Deep LearningRanger21
Overview

Ranger21 - integrating the latest deep learning components into a single optimizer

Ranger deep learning optimizer rewrite to use newest components

Ranger, with Radam + Lookahead core, is now approaching two years old.
*Original publication, Aug 2019: New deep learning optimizer Ranger
In the interim, a number of new developments have happened including the rise of Transformers for Vision.

Thus, Ranger21 (as in 2021) is a rewrite with multiple new additions reflective of some of the most impressive papers this past year. The focus for Ranger21 is that these internals will be parameterized, and where possible, automated, so that you can easily test and leverage some of the newest concepts in AI training, to optimize the optimizer on your respective dataset.

Latest Simple Benchmark comparison (Image classification, dog breed subset of ImageNet, ResNet-18):

Ranger 21:
Accuracy: 74.02% Validation Loss: 15.00

Adam:
Accuracy: 64.84% Validation Loss: 17.19

Net results: 14.15% greater accuracy with Ranger21 vs Adam, same training epochs.

Ranger21 Status:

April 27 PM - Ranger21 now training on ImageNet! Starting work on benchmarking Ranger21 on ImageNet. Due to cost, will train to 40 epochs on ImageNet and compare with same setup with 40 epochs using Adam to have a basic "gold standard" comparison. Training is underway now, hope to have results end of this week.

April 26 PM - added smarter auto warmup based on Dickson Neoh report (tested with only 5 epochs), and first pip install setup thanks to @BrianPugh!
The warmup structure for Ranger21 is based on the paper by Ma/Yarats which uses the beta2 param to compute the default warmup. However, that also assumes we have a longer training run. @DNH on the fastai forums tested with 5 epochs which meant it never got past warmup phase.
Thus have added a check for the % warmup relative to the total training time and will auto fall back to 30% (settable via warmup_pct_default) in order to account for shorter training runs.

  • First pip install for Ranger21, thanks to @BrianPugh! In the next week or two will be focusing on making Ranger21 easier to install and use vs adding new optimizer features and thanks to @BrianPugh we've already underway with a basic pip install.
git clone https://github.com/lessw2020/Ranger21.git
cd Ranger21
python -m pip install -e .
```

or directly installed from github:

```
python -m pip install git+https://github.com/lessw2020/Ranger21.git

April 25 PM - added guard for potential key error issue Update checked in to add additional guard to prevent a key error reported earlier today during lookahead step. This should correct, but since unable to repro locally, please update to latest code and raise an issue if you encounter this. Thanks!

April 25 - Fixed warmdown calculation error, moved to Linear warmdown, new high in benchmark: Found that there was an error in the warmdown calculations. Fixed and also moved to linear warmdown. This resulted in another new high for the simple benchmark, with results now moved to above so they don't get lost in the updates section.
Note that the warmdown now calculates based on the decay between the full lr, to the minimal lr (defaults to 3e-5), rather than previously declining to 0.

Note that you can display the lr curves directly by simply using:

lr_curve = optimizer.tracking_lr
plt.plot(lr_curve)

Ranger21 internally tracks the lr per epoch for this type of review. Additional updates include adding a 'clear_cache' to reset the cached lookahead params, and also moved the lookahead procesing to it's own function and cleaned up some naming conventions. Will use item_active=True/False rather than the prior using_item=True/False to keep the code simpler as now item properties are alpha grouped vs being cluttered into the using_item layout.
April 24 - New record on benchmark with NormLoss, Lookahead, PosNeg momo, Stable decay etc. all combined NormLoss and Lookahead integrated into Ranger21 set a new high on our simple benchmark (ResNet 18, subset of ImageWoof).
Best Accuracy = 73.41 Best Val Loss = 15.06

For comparison, using plain Adam on this benchmark:
Adam Only Accuracy = 64.84 Best Adam Val Loss = 17.19

In otherwords, 12.5%+ higher accuracy atm for same training epochs by using Ranger21 vs Adam.

Basically it shows that the integration of all these various new techniques is paying off, as currently combining them delivers better than any of them + Adam.

New code checked in - adds Lookahead and of course Norm Loss. Also the settings is now callable via .show_settings() as an easy way to check settings.
Ranger21_424_settings

Given that the extensive settings may become overwhelming, planning to create config file support to make it easy to save out settings for various architectures and ideally have a 'best settings' recipe for CNN, Transformer for Image/Video, GAN, etc.

April 23 - Norm Loss will be added, initial benchmarking in progress for several features A new soft regularizer, norm loss, was recently published in this paper on Arxiv: https://arxiv.org/abs/2103.06583v1

It's in the spirit of weight decay, but approaches it in a unique manner by nudging the weights towards the oblique manifold..this means unlike weight decay, it can actually push smaller weights up towards the norm 1 property vs weight decay only pushes down. Their paper also shows norm less is less sensitive to hyperparams such as batch size, etc. unlike regular weight decay.

One of the lead authors was kind enough to share their TF implemention, and have reworked it into PyTorch form and integrated into Ranger21. Initial testing set a new high for validation loss on my very basic benchmark. Thus, norm loss will be available with the next code update.

Also did some initial benchmarking to set vanilla Adam as a baseline, and ablation style testing with pos negative momentum. Pos neg momo alone is a big improvement over vanilla Adam, and looking forward to mapping out the contributions and synergies between all of the new features being rolled into Ranger21 including norm loss, adapt gradient clipping, gc, etc.

April 18 PM - Adaptive gradient clipping added, thanks for suggestion and code from @kayuksel. AGC is used in NFNets to replace BN. For our use case here, it's to have a smarter gradient clipping algo vs the usual hard clipping, and ideally better stabilize training.

Here's how the Ranger21 settings output looks atm: ranger21_settings

April 18 AM - chebyshev fractals added, cosine warmdown (cosine decay) added
Chebyshev performed reasonably well, but still needs more work before recommending so it's defaulting to off atm. There are two papers providing support for using Chebyshev, one of which is: https://arxiv.org/abs/2010.13335v1
Cosine warmdown has been added so that the default lr schedule for Ranger21 is linear warmup, flat run at provided lr, and then cosine decay of lr starting at the X% passed in. (Default is .65).

April 17 - building benchmark dataset(s) As a cost effective way of testing Ranger21 and it's various options, currently taking a subset of ImageNet categories and building out at the high level an "ImageSubNet50" and also a few sub category datasets. These are similar in spirit to ImageNette and ImageWoof, but hope to make a few relative improvements including pre-sizing to 224x224 for speed of training/testing. First sub-dataset in progress in ImageBirds, which includes:
n01614925 bald eagle
n01616318 vulture
n01622779 grey owl

n01806143 peacock
n01833805 hummingbird

This is a medium-fine classification problem and will use as first tests for this type of benchmarking. Ideally, will make a seperate repo for the ImageBirds shortly to make it available for people to use though hosting the dataset poses a cost problem...

April 12 - positive negative momentum added, madgrad core checked in Testing over the weekend showed that positive negative momentum works really well, and even better with GC.
Code is a bit messy atm b/c also tested Adaiw, but did not do that well so removed and added pos negative momentum. Pos Neg momentum is a new technique to add parameter based, anisotropic noise to the gradient which helps it settle into flatter minima and also escape saddle points. In other words, better results.
Link to their excellent paper: https://arxiv.org/abs/2103.17182

You can toggle between madgrad or not with the use_madgrad = True/False flag: ranger21_use_madgrad_toggle

April 10 - madgrad core engine integrated Madgrad has been added in a way that you will be able to select to use MadGrad or Adam as the core 'engine' for the optimizer.
Thus, you'll be able to simply toggle which opt engine to use, as well as the various enhancements (warmup, stable weight decay, gradient_centralization) and thus quickly find the best optimization setup for your specific dataset.

Still testing things and then will update code here... Gradient centralization good for both - first findings are gradient centralization definitely improves MadGrad (just like it does with Adam core) so will have GC on as default for both engines.

madgrad_added_ranger21

LR selection is very different between MadGrad and Adam core engine:

One item - the starting lr for madgrad is very different (typically higher) than with Adam....have done some testing with automated LR scheduling (HyperExplorer and ABEL), but that will be added later if it's successful. But if you simply plug your usual Adam LR's into Madgrad you won't be impressed :)

Note that AdamP projection was also tested as an option, but impact was minimal, so will not be adding it atm.

April 6 - Ranger21 alpha ready - automatic warmup added. Seeing impressive results with only 3 features implemented.
Stable weight decay + GC + automated linear warmup seem to sync very nicely. Thus if you are feeling adventorous, Ranger21 is basically alpha usable. Recommend you use the default warmup (automatic by default), but test lr and weight decay.
Ranger21 will output the settings at init to make it clear what you are running with: Ranger21_initialization

April 5 - stable weight decay added. Quick testing shows nice results with 1e-4 weight decay on subset of ImageNet.

Current feature set planned:

1 - feature complete - automated, Linear and Exponential warmup in place of RAdam. This is based on the findings of https://arxiv.org/abs/1910.04209v3

2 - Feature in progress - MadGrad core engine . This is based on my own testing with Vision Transformers as well as the compelling MadGrad paper: https://arxiv.org/abs/2101.11075v1

3 - feature complete - Stable Weight Decay instead of AdamW style or Adam style: needs more testing but the paper is very compelling: https://arxiv.org/abs/2011.11152v3

4 - feature complete - Gradient Centralization will be continued - as always, you can turn it on or off. https://arxiv.org/abs/2004.01461v2

5 - Lookahead may be brought forward - unclear how much it may help with the new MadGrad core, which already leverages dual averaging, but will probably include as a testable param.

6 - Feature implementation in progress - dual optimization engines - Will have Adam and Madgrad core present as well so that one could quickly test with both Madgrad and Adam (or AdamP) with the flip of a param.

If you have ideas/feedback, feel free to open an issue.

Installation

Until this is up on pypi, this can either be installed via cloning the package:

git clone https://github.com/lessw2020/Ranger21.git
cd Ranger21
python -m pip install -e .

or directly installed from github:

python -m pip install git+https://github.com/lessw2020/Ranger21.git
Owner
Less Wright
Principal Software Engineer at Audere PM/Test/Dev at Microsoft Software Architect at X10 Wireless
Less Wright
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023