Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Overview

Memformer - Pytorch

Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attention, learned efficiently through Memory-Replay BackPropagation (MRBP) through time.

Install

$ pip install memformer

Usage

Full encoder / decoder, as in the paper

import torch
from memformer import Memformer

model = Memformer(
    dim = 512,
    enc_num_tokens = 256,
    enc_depth = 2,
    enc_heads = 8,
    enc_max_seq_len = 1024,
    dec_num_tokens = 256,
    dec_depth = 2,
    dec_heads = 8,
    dec_max_seq_len = 1024,
    num_memory_slots = 128
)

src_seg_1 = torch.randint(0, 256, (1, 1024))
src_seg_2 = torch.randint(0, 256, (1, 1024))
src_seg_3 = torch.randint(0, 256, (1, 1024))

tgt = torch.randint(0, 256, (1, 1024))

enc_out1, mems1,    _ = model(src_seg_1) # (1, 1024, 512), (1, 128, 512), _
enc_out2, mems2,    _ = model(src_seg_2, mems = mems1)
enc_out3, mems3, loss = model(src_seg_3, tgt, mems = mems2)

loss.backward()

Encoder only

import torch
from memformer import Memformer

model = Memformer(
    dim = 512,
    enc_num_tokens = 256,
    enc_heads = 8,
    enc_depth = 2,
    enc_max_seq_len = 1024,
    num_memory_slots = 128,
    num_mem_updates = 2,
    encoder_only = True       # only use encoder, in which output is encoded output
)

src1 = torch.randint(0, 256, (1, 1024))
src2 = torch.randint(0, 256, (1, 1024))

enc1, mems1 = model(src1) # (1, 1024, 512), (1, 128, 512)
enc2, mems2 = model(src2, mems = mems1)

Memory Replay Back-Propagation

import torch
from memformer import Memformer, memory_replay_backprop

model = Memformer(
    dim = 512,
    num_memory_slots = 128,
    enc_num_tokens = 256,
    enc_depth = 2,
    enc_max_seq_len = 1024,
    dec_num_tokens = 256,
    dec_depth = 2,
    dec_max_seq_len = 1024
).cuda()

seq = torch.randint(0, 256, (1, 8192)).cuda()
seq_mask = torch.ones_like(seq).bool().cuda()

tgt = torch.randint(0, 256, (1, 512)).cuda()
tgt_mask = torch.ones_like(tgt).bool().cuda()

# will automatically split the source sequence to 8 segments
memory_replay_backprop(
    model,
    src = seq,
    tgt = tgt,
    src_mask = seq_mask,
    tgt_mask = tgt_mask
)

Citations

@inproceedings{
    anonymous2021memformer,
    title={Memformer: The Memory-Augmented Transformer},
    author={Anonymous},
    booktitle={Submitted to International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=_adSMszz_g9},
    note={under review}
}
You might also like...
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

DrQ-v2: Improved Data-Augmented Reinforcement Learning
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

 RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Comments
  • WIP - MemformerEncoder

    WIP - MemformerEncoder

    I´m always trying all your awesome work on transformers. My problem is NER on very large texts, with few examples.

    Memformer is the first one so far to converge faster and wield better accuracy than RNN encoders as LSTM, SRU and IndRNN It is ridiculously better than everything else I tested, congratulations @lucidrains 🥳

    I need to use the transformer as a Encoder in my pipeline, to feed a CRF layer. So I modified the code to accept an already embedded input, and to only do the Encode step.

    TODO:

    • [ ] Support Mask
    • [ ] Re-utilize code with Memformer class

    Is this within the scope of the project?

    opened by bratao 10
  • ETA on complete examples

    ETA on complete examples

    @lucidrains As I asked about the feedback-transformer, I was also wondering about this memformer implementation as I would love to try it. Any eta on any complete examples here? They will be much appreciated. Thanks.

    And similarly, I would love to see a simple example for custom line-by-line TXT datasets as well.

    Thank you again :)

    opened by asigalov61 0
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022