Optimized code based on M2 for faster image captioning training

Overview

Transformer Captioning

This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimize the code for FASTER training without any accuracy decline.

Specifically, we optimize following aspects:

  • vocab: we pre-tokenize the dataset so there are no ' '(space token) in vocab or generated sentences.
  • Dataloader: we optimize speed of dataloader and achieve 2x~6x speed-up.
  • BeamSearch:
    • Make ops parallel in beam_search.py (e.g. loop gather -> parallel gather)
    • Use cheaper ops (e.g. torch.sort -> torch.topk)
    • Use faster and specialized functions instead of general ones
  • Self-critical Training
    • Compute Cider by index instead of raw text
    • Cache tf-idf vector of gts instead of computing it again and again
    • drop on-the-fly tokenization since it is too SLOW.
  • contiguous model parameter
  • other details...

speed-up result (1 GeForce 1080Ti GPU, num_workers=8, batch_size=50(XE)/100(SCST))

Training its/s Original Optimized Accelerate
XE 7.5 10.3 138%
SCST 0.6 1.3 204%
Dataloader its/s Original XE Optimized XE Accelerate Original SCST Optimized SCST Accelerate
batch size=50 12.5 52.5 320% 29.3 90.7 209%
batch size=100 5.5 33.5 510% 22.3 88.5 297%
batch size=150 3.7 25.4 580% 13.4 71.8 435%
batch size=200 2.7 20.1 650% 11.4 54.1 376%

Things I have tried but not useful

  • TorchText n-gram counter: slower than the original one.
  • nn.Module.MultiHeadAttention: slightly faster than original one.
  • GPU cider: very slow
  • BeamableMM: slower than the original

Environment setup

Clone the repository and create the m2release conda environment using the environment.yml file:

conda env create -f environment.yml
conda activate m2release

Then download spacy data by executing the following command:

python -m spacy download en

Note: Python 3.6 is required to run our code.

Data preparation

To run the code, annotations and detection features for the COCO dataset are needed. Please download the annotations file annotations.zip and extract it.

Detection features are computed with the code provided by [1]. To reproduce our result, please download the COCO features file coco_detections.hdf5 (~53.5 GB), in which detections of each image are stored under the <image_id>_features key. <image_id> is the id of each COCO image, without leading zeros (e.g. the <image_id> for COCO_val2014_000000037209.jpg is 37209), and each value should be a (N, 2048) tensor, where N is the number of detections.

REMEMBER to do pre-tokenize

python pre_tokenize.py

Evaluation

Run python test.py using the following arguments:

Argument Possible values
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations

Training procedure

Run python train.py using the following arguments:

Argument Possible values
--exp_name Experiment name
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--head Number of heads (default: 8)
--resume_last If used, the training will be resumed from the last checkpoint.
--resume_best If used, the training will be resumed from the best checkpoint.
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations
--logs_folder Path folder for tensorboard logs (default: "tensorboard_logs")

For example, to train our model with the parameters used in our experiments, use

We recommend to use batch size=100 during SCST stage. Since it will accelerate convergence without obvious accuracy decline

python train.py --exp_name test --batch_size 50 --head 8 --features_path ~/datassd/coco_detections.hdf5 --annotation_folder annotation --workers 8 --rl_batch_size 100 --image_field FasterImageDetectionsField --model transformer --seed 118

References

Owner
lyricpoem
lyricpoem
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022