FS-Mol: A Few-Shot Learning Dataset of Molecules

Related tags

Deep LearningFS-Mol
Overview

FS-Mol: A Few-Shot Learning Dataset of Molecules

This repository contains data and code for FS-Mol: A Few-Shot Learning Dataset of Molecules.

Installation

  1. Clone or download this repository

  2. Install dependencies

    cd FS-Mol
    
    conda env create -f environment.yml
    conda activate fsmol
    

The code for the Molecule Attention Transformer baseline is added as a submodule of this repository. Hence, in order to be able to run MAT, one has to clone our repository via git clone --recurse-submodules. Alternatively, one can first clone our repository normally, and then set up submodules via git submodule update --init. If the MAT submodule is not set up, all the other parts of our repository should continue to work.

Data

The dataset is available as a download, FS-Mol Data, split into train, valid and test folders. Additionally, we specify which tasks are to be used with the file datasets/fsmol-0.1.json, a default list of tasks for each data fold. We note that the complete dataset contains many more tasks. Should use of all possible training tasks available be desired, the training script argument --task_list_file datasets/entire_train_set.json should be used. The task lists will be used to version FS-Mol in future iterations as more data becomes available via ChEMBL.

Tasks are stored as individual compressed JSONLines files, with each line corresponding to the information to a single datapoint for the task. Each datapoint is stored as a JSON dictionary, following a fixed structure:

{
    "SMILES": "SMILES_STRING",
    "Property": "ACTIVITY BOOL LABEL",
    "Assay_ID": "CHEMBL ID",
    "RegressionProperty": "ACTIVITY VALUE",
    "LogRegressionProperty": "LOG ACTIVITY VALUE",
    "Relation": "ASSUMED RELATION OF MEASURED VALUE TO TRUE VALUE",
    "AssayType": "TYPE OF ASSAY",
    "fingerprints": [...],
    "descriptors": [...],
    "graph": {
        "adjacency_lists": [
           [... SINGLE BONDS AS PAIRS ...],
           [... DOUBLE BONDS AS PAIRS ...],
           [... TRIPLE BONDS AS PAIRS ...]
        ],
        "node_types": [...ATOM TYPES...],
        "node_features": [...NODE FEATURES...],
    }
}

FSMolDataset

The fs_mol.data.FSMolDataset class provides programmatic access in Python to the train/valid/test tasks of the few-shot dataset. An instance is created from the data directory by FSMolDataset.from_directory(/path/to/dataset). More details and examples of how to use FSMolDataset are available in fs_mol/notebooks/dataset.ipynb.

Evaluating a new Model

We have provided an implementation of the FS-Mol evaluation methodology in fs_mol.utils.eval_utils.eval_model(). This is a framework-agnostic python method, and we demonstrate how to use it for evaluating a new model in detail in notebooks/evaluation.ipynb.

Note that our baseline test scripts (fs_mol/baseline_test.py, fs_mol/maml_test.py, fs_mol/mat_test, fs_mol/multitask_test.py and fs_mol/protonet_test.py) use this method as well and can serve as examples on how to integrate per-task fine-tuning in TensorFlow (maml_test.py), fine-tuning in PyTorch (mat_test.py) and single-task training for scikit-learn models (baseline_test.py). These scripts also support the --task_list_file parameter to choose different sets of test tasks, as required.

Baseline Model Implementations

We provide implementations for three key few-shot learning methods: Multitask learning, Model-Agnostic Meta-Learning, and Prototypical Networks, as well as evaluation on the Single-Task baselines and the Molecule Attention Transformer (MAT) paper, code.

All results and associated plots are found in the baselines/ directory.

These baseline methods can be run on the FS-Mol dataset as follows:

kNNs and Random Forests -- Single Task Baselines

Our kNN and RF baselines are obtained by permitting grid-search over a industry-standard parameter set, detailed in the script baseline_test.py.

The baseline single-task evaluation can be run as follows, with a choice of kNN or randomForest model:

python fs_mol/baseline_test.py /path/to/data --model {kNN, randomForest}

Molecule Attention Transformer

The Molecule Attention Transformer (MAT) paper, code.

The Molecule Attention Transformer can be evaluated as:

python fs_mol/mat_test.py /path/to/pretrained-mat /path/to/data

GNN-MAML pre-training and evaluation

The GNN-MAML model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $8$-layer GNN with node-embedding dimension $128$. The GNN uses "Edge-MLP" message passing. The model was trained with a support set size of $16$ according to the MAML procedure Finn 2017. The hyperparameters used in the model checkpoint are default settings of maml_train.py.

The current defaults were used to train the final versions of GNN-MAML available here.

python fs_mol/maml_train.py /path/to/data 

Evaluation is run as:

python fs_mol/maml_test.py /path/to/data --trained_model /path/to/gnn-maml-checkpoint

GNN-MT pre-training and evaluation

The GNN-MT model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $10$-layer GNN with node-embedding dimension $128$. The model uses principal neighbourhood aggregation (PNA) message passing. The hyperparameters used in the model checkpoint are default settings of multitask_train.py. This method has similarities to the approach taken for the task-only training contained within Hu 2019

python fs_mol/multitask_train.py /path/to/data 

Evaluation is run as:

python fs_mol/multitask_test.py /path/to/gnn-mt-checkpoint /path/to/data

Prototypical Networks (PN) pre-training and evaluation

The prototypical networks method Snell 2017 extracts representations of support set datapoints and uses these to classify positive and negative examples. We here used the Mahalonobis distance as a metric for query point distance to class prototypes.

python fs_mol/protonet_train.py /path/to/data 

Evaluation is run as:

python fs_mol/protonet_test.py /path/to/pn-checkpoint /path/to/data

Available Model Checkpoints

We provide pre-trained models for GNN-MAML, GNN-MT and PN, these are downloadable from the links to figshare.

Model Name Description Checkpoint File
GNN-MAML Support set size 16. 8-layer GNN. Edge MLP message passing. MAML-Support16_best_validation.pkl
GNN-MT 10-layer GNN. PNA message passing multitask_best_model.pt
PN 10-layer GGN, PNA message passing. ECFP+GNN, Mahalonobis distance metric PN-Support64_best_validation.pt

Specifying, Training and Evaluating New Model Implementations

Flexible definition of few-shot models and single task models is defined as demonstrated in the range of train and test scripts in fs_mol.

We give a detailed example of how to use the abstract class AbstractTorchFSMolModel in notebooks/integrating_torch_models.ipynb to integrate a new general PyTorch model, and note that the evaluation procedure described below is demonstrated on sklearn models in fs_mol/baseline_test.py and on a Tensorflow-based GNN model in fs_mol/maml_test.py.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023