graph-theoretic framework for robust pairwise data association

Overview

banner

CLIPPER: A Graph-Theoretic Framework for Robust Data Association

Data association is a fundamental problem in robotics and autonomy. CLIPPER provides a framework for robust, pairwise data association and is applicable in a wide variety of problems (e.g., point cloud registration, sensor calibration, place recognition, etc.). By leveraging the notion of geometric consistency, a graph is formed and the data association problem is reduced to the maximum clique problem. This NP-hard problem has been studied in many fields, including data association, and solutions techniques are either exact (and not scalable) or approximate (and potentially imprecise). CLIPPER relaxes this problem in a way that (1) allows guarantees to be made on the solution of the problem and (2) is applicable to weighted graphs, avoiding the loss of information due to binarization which is common in other data association work. These features allow CLIPPER to achieve high performance, even in the presence of extreme outliers.

This repo provides both MATLAB and C++ implementations of the CLIPPER framework. In addition, Python bindings, Python, C++, and MATLAB examples are included.

Citation

If you find this code useful in your research, please cite our paper:

  • P.C. Lusk, K. Fathian, and J.P. How, "CLIPPER: A Graph-Theoretic Framework for Robust Data Association," arXiv preprint arXiv:2011.10202, 2020. (pdf) (presentation)
@inproceedings{lusk2020clipper,
  title={CLIPPER: A Graph-Theoretic Framework for Robust Data Association},
  author={Lusk, Parker C and Fathian, Kaveh and How, Jonathan P},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021}
}

Getting Started

After cloning this repo, please build using cmake:

$ mkdir build
$ cd build
$ cmake ..
$ make

Once successful, the C++ tests can be run with ./test/tests (if -DBUILD_TESTS=ON is added to cmake .. command).

Python Bindings

If Python bindings are built (see configuration options below), then the clipper Python module will need to be installed before using. This can be done with

$ cd build
$ make pip-install

# or directly using pip (e.g., to control which python version)
$ python3 -m pip install build/bindings/python # 'python3 -m' ensures appropriate pip version is used

Note: if using Python2 (e.g., < ROS Noetic), you must tell pybind11 to use Python2.7. Do this with adding the flag -DPYBIND11_PYTHON_VERSION=2.7 to the cmake .. command. You may have to remove your build directory and start over to ensure nothing is cached. You should see that pybind11 finds a Python2.7 interpreter and libraries.

A Python example notebook can be found in examples.

MATLAB Bindings

If MATLAB is installed on your computer and MATLAB bindings are requested (see configuration options below), then cmake will attempt to find your MATLAB installation and subsequently generate a set of MEX files so that CLIPPER can be used in MATLAB.

Note that in addition to the C++/MEX version of CLIPPER's dense cluster finder, we provide a reference MATLAB version of our projected gradient ascent approach to finding dense clusters.

Please find MATLAB examples here.

Configuring the Build

The following cmake options are available when building CLIPPER:

Option Description Default
BUILD_BINDINGS_PYTHON Uses pybind11 to create Python bindings for CLIPPER ON
BUILD_BINDINGS_MATLAB Attempts to build MEX files which are required for the MATLAB examples. A MATLAB installation is required. Gracefully fails if not found. ON
BUILD_TESTS Builds C++ tests OFF
ENABLE_MKL Attempts to use Intel MKL (if installed) with Eigen for accelerated linear algebra. OFF
ENABLE_BLAS Attempts to use a BLAS with Eigen for accelerated linear algebra. OFF

Note: The options ENABLE_MKL and ENABLE_BLAS are mutually exclusive.

These cmake options can be set using the syntax cmake -DENABLE_MKL=ON .. or using the ccmake . command (both from the build dir).

Performance with MKL vs BLAS

On Intel CPUs, MKL should be preferred as it offers superior performance over other general BLAS packages. Also note that on Ubuntu, OpenBLAS (sudo apt install libopenblas-dev) provides better performance than the default installed blas.

With MKL, we have found an almost 2x improvement in runtime over the MATLAB implementation. On an i9, the C++/MKL implementation can solve problems with 1000 associations in 70 ms.

Note: Currently, MATLAB bindings do not work if either BLAS or MKL are enabled. Python bindings do not work if MKL is enabled.

Including in Another C++ Project

A simple way to include clipper as a shared library in another C++ project is via cmake. This method will automatically clone and build clipper, making the resulting library accessible in your main project. In the project CMakeLists.txt you can add

set(CLIPPER_DIR "${CMAKE_CURRENT_BINARY_DIR}/clipper-download" CACHE INTERNAL "CLIPPER build dir" FORCE)
set(BUILD_BINDINGS_MATLAB OFF CACHE BOOL "")
set(BUILD_TESTS OFF CACHE BOOL "")
set(ENABLE_MKL OFF CACHE BOOL "")
set(ENABLE_BLAS OFF CACHE BOOL "")
configure_file(cmake/clipper.cmake.in ${CLIPPER_DIR}/CMakeLists.txt IMMEDIATE @ONLY)
execute_process(COMMAND "${CMAKE_COMMAND}" -G "${CMAKE_GENERATOR}" . WORKING_DIRECTORY ${CLIPPER_DIR})
execute_process(COMMAND "${CMAKE_COMMAND}" --build . WORKING_DIRECTORY ${CLIPPER_DIR})
add_subdirectory(${CLIPPER_DIR}/src ${CLIPPER_DIR}/build)

where cmake/clipper.cmake.in looks like

cmake_minimum_required(VERSION 3.10)
project(clipper-download NONE)

include(ExternalProject)
ExternalProject_Add(clipper
    GIT_REPOSITORY      "https://github.com/mit-acl/clipper"
    GIT_TAG             master
    SOURCE_DIR          "${CMAKE_CURRENT_BINARY_DIR}/src"
    BINARY_DIR          "${CMAKE_CURRENT_BINARY_DIR}/build"
    CONFIGURE_COMMAND   ""
    BUILD_COMMAND       ""
    INSTALL_COMMAND     ""
    TEST_COMMAND        ""
)

Then, you can link your project with clipper using the syntax target_link_libraries(yourproject clipper).


This research is supported by Ford Motor Company.

Owner
MIT Aerospace Controls Laboratory
see more code at https://gitlab.com/mit-acl
MIT Aerospace Controls Laboratory
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022